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I .  IN TRO DUC TION 

This report summarizes a year's development of the plastic substrate CdS 
t NAS 3-9434. This is the continuation of a se r ies  S 9 f m  on the CdS thin film solar cell at the Clevite 

thin film solar cell under 
of ear l ier  NASA contracts 
Research Center. 

The present program's  major objectives were: cell design improvement 
(including the conductive plastic substrate, increasing a rea  utilization, and larger  
cells); higher cell efficiencies; characterizing the CdS thin film cell (particularly 
its stability); and operating a cell fabrication line to make 100 cells per month. 

Part way into this program work on the cell design improvements was 
reduced and increased efforts were placed on characterizing cell stability and on 
achieving better control over the process of fabricating the cells. The processes 
for attaching the grid and for cementing the cover plastic were singled out for  
additional development, but all of the fabrication processes  a s  well as the raw 
materials and component parts used in the cell were to receive better inspection 
and quality assurance procedures in an effort to improve cell reproducibility. 

Still further into the Contract it became evident that the cells being fabricated 
were not remaining stable when placed in a vacuum chamber and temperature cycled 
to simulate the conditions expected on a space vehicle in a low altitude earth orbit. 
The reasuna for the loss of cell output on these tes ts  were not evident, though an 
intrineic change in the semiconductor junction did not seem to be involved. A major 
shift in emphaeis was made therefore toward determining the causes fo r  cell failures 
during vacuum thermal cycling. 

IDUrirkg chi@ reporting period additional tooling and processing facilities were 
provided and proved-in, 88 part of a separate Company funded program, which 
increaeqd cell fabrication capacity to the level of 100 cells per 8-hour day. 
was carr ied out successfully retaining essentially the same cell design and fabrica- 
tion process. 

This 

Many individuals have contributed to the progress reported here. Project 
direction has been provided by F . A.  Shirland. J .  R .  Hietanen was the principal 
investigator- for the ear l ier  part of the contract period, with F. A .  Shirland filling 
this f-;?ct:.~r: $;:rZuI;g the kist, k w  i1i"iiiiiu. 
participated in these studies: W. K.  Bower, W .  F. Dunn, J. B. Green, R. J .  
Kinley, D. L. Lehrnsnn, H. E. Nastelin, L.  R .  Shiozawa, R .  D. Simonton, L. S.  
Sliker md J ,  A .  Smith. 

The Ioiiowing Cievite personnel also 

L, R, Scudder of the Power Systems Division, Lewis Research Center, NASA, 
acted as Contract Monitor under the direction of A .  F. Forest ier i .  A .  Spakowski of 
the Chemistry and Energy Conversion Division, Lewis Research Center, NASA, 
carr ied out some of the temperature cycling tests and other evaluations reported 
here. Many other personnel of the Lewis Research Center also were involved in 
evaluating and testing the cells prepared on this contract and their work is gratefully 
acknowledged, 

In addition, A .  Stanley and other personnel of M. I. T. Lincoln Laboratory 
ran some thermal cycling tests and other analyses of the cell which contributed 
substantially to a better understanding of the weaknesses in the present cell design. 

CLEVITE CORPORATION 1 ELECTRONIC RESEARCH DIVISION 



11. CELL FABRICATION 

A .  Standard Cell Design 

The design of the CdS thin film solar cell has not changed substantially over 
the period of this study. 
construction and detailed dimensions a r e  shown in Figure 1. 

The standard cell is still nominally 3" x 3" in size,  The 

Tlg? active cell a rea  has remained fixed at  74 mm x 74 mm for a total of 
$ 4 . 7 5  cm . All cell efficiency data presented in this report  a r e  based on this a rea  
unless otherwise specifically stated. 
of overlap of the cover plastic have varied somewhat during this period, but the 
tolerances on these have gradually been tightened and in the last few months of the 
period have more nearly approximated those shown in Figure I, 

The s ize  of the negative lead tab and the amount 

The substrate consists of Kapton plastic film, 1 mil  thick, which is given 
a 0.25 to 0.30 mil thick conductive coating on one surface. An extension of thia 
conductive substrate forms  the negative lead tab. The CdS semiconductor is a 
polycrystalline film approx. 1 mil  thick. There is a very thin zinc interlayer 
between the CdS film and the conductive substrate to ensure an ohmic contact between 
the substrate and the CdS. 

The bar r ie r  layer i s  Cu S formed on the upper surface of the CdS film, A 
metal mesh collector grid is atkched to the ba r r i e r  with a conductive epoxy cement. 
An extension of this grid forms the positive electrode tab of the cell. A narrow 
insulating s t r ip  of Kapton plastic is placed under the grid where it crosses  the edge 
of the cell to prevent shorting to the conductive substrate. 

The package is completed by attaching a 1 mil thick cover of either Mylar or  
Kapton plastic, using a clear epoxy resin a s  cement. The grid is copper which has 
been gold plated, and the negative electrode tab is given a copper undercoating and 
then a flash gold plating fo r  tarnish resistance and solderability. The entire cell 
package is about 4 mils  thick, except at the lead tabs. 

The collector grid is 0.45 mils thick and has a rectangular grid pattern with 
60 "wires" per inch .in one direction and 10 ' 'wires' ' per inch in the other, The 
"wires" @re  nominally 0 .  Q01" wide, but taper to 0.00125" at the tab end from 0,00075" 
~t the fki- eiid. 
additional phyeical integrity which is needed during handling and layup. The cal- 
culated light transmission of the grid design is 9170 but actual light transmission of 
the grids that have been supplied have generally run about 84 to 850J. 

There is an 6 . 3 i 4 "  wiae border around the edges of the grid to give it 

Two holes in the tab of the collector grid a re  intended as locating holes to 
facilitate layup and handling. In addition, they serve to ensure that the grids a re  
assembled right side up since they are tapered in cross  section as a result of the 
etching process used to  fabricate them. 

B. Fabrication Process  

The process for making the plastic substrate CdS thin fi lm solar cell is 
relatively straightforward and consists of about a half-a-dozen major steps, These 
are:  substrate preparation, CdS film deposition, Cu2S ba r r i e r  formation, gridding, 
laminating, and cell finishing. 

CLEVITE CORPORATION 2 ELECTRONIC RESEARCH DIVISION 



& ) T A B  (EXTENSION OF G R I D )  n-.- 

A 

WI A U  \ CXTENSION 
f 1/32 

\ -  

(D 
(u 

0 - 

-.53 --. 

Y-- 16 

! ?! T EG !?A L 
~ T A S  TAB 

rn 2 9  f 1/32 
IO  

2- 
3 2  

.025 

1 

I f 1/32 COVER PLASTIC 
3fi 

. 15 DIA. 2HOLES 7 

. 
t0.14 ( 3  SIDES) .025 

7 UPPER PLASTIC \ y- EPOXY (.0005") 

METAL GRID (.0005"1 \ y BARRIER LAYER i n  

*a* 8 

-.OS0 

ITEGRAL 
CONTACT T A B 7  \ \  \ \  

FIG. I : CONSTRUCTION AND DIMENSIONS OF CLEVITE PLASTIC 
SUBSTRATE CdS THIN FILM SOLAR CELL. 

3 



These processes have evolved over many years.  
accumulated experience with the conditions and parameters  of most of the process 
steps that enables the fabrication to be carried out successfully, rather than an 
understanding of what is actually occurring during the operations. 

In general, it is the 

1. Substrate Preparation 

A 1 mil thick plastic Kapton film is first cleaned by scrubbing with DMF 
solvent and then sprayed on one surface with a 1 part si lver to 2 parts  Pyre-ML by 
weight solution to a thickness of 0.25 to 0. 30 mils.  The sprayed substrate is then 
dried in an oven at 150°C to remove all t races  of the DMF solvent and then cured in 
another oven at 250°C for  30 minutes. I ts  electrical sheet resistance is measured 
and held below . 01 ohm/ sq. 

The substrate is then burnished with a Scotch Brite finishing pad mounted 
on a Rockwell finishing sander to produce a bright, uniformly smooth-textured su r -  
face, This operation has been found necessary in order  to expose the si lver pigment 
so that suitable electrical contact can be made to it. 

The burnished silver Pyre-ML coated plastic substrate is then given a 
The zinc is needed in order  to secure good ohmic zinc coating by electroplating. 

contact between the si lver Pyre-ML and the subsequently deposited CdS fi lm. The 
uniformity of the zinc electroplating appears to be important in securing a uniform 
structure CdS film, and the zinc plating must be fresh and free f rom extraneous 
contamination in order to secure an adherent CdS deposition. 

2. CdS EvaDoration 

A commercial grade of CdS powder is presintered in vacuum to 850°C and 
then in argon to 1200°C to remove high vapor impurities and to densify the material. 
it is then crushed in a mortar  and pestle to pass through a 42 mesh screen. 

This material  is then charged into quartz crucibles in a v y u u m  
evaporator. Vacuum evaporation is carr ied out at a pressure of 10- T o r r  with 
the substrate held at 220°C. Evaporation is carried out at a rate on the order  of 
100 to 200A per second. A five minute glow discharge is used during the pump down 
in ass i s?  ;,I c1ezzi.qg t h c  sl;k,trzte %id ; spe~ia i  precauzions must be taken during the 
evaporation to prevent spattering of the substrate w i t h  ejected CdS particles from 
the sources. 

The resultant CdS films are approximately 20 to 25 microqq thick w d  a r e  
n - t p e  semiconducting with car r ie r  concentrations in the range of 10 
cm 
oriented with the C axis generally perpendicular to the substrate and has an average 
grain size of approximately a few microns. 
do not appear to be very critical and generally satisfactory results have been 
obtained over a wide range of operating conditions. 

to 10 per 
resulting from a stoichiometric excess of cadmium. The cadmium sulfide is 

The conditions of vacuum evaporation 

3. Barrier  Formation 

The bar r ie r  layer is formed by dipping the CdS fi lm into a hot water 
solution of CuCl for just  a few seconds. The details of this process a r e  largely 
proprietary, but in general the process consists of Cu+ ions replacing Cd++ ions 
at the surface of the CdS to form a thin layer of copper deficient Cu2S. Recent 
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measurements by L .  R .  Shiozawa(*) indicate that this layer is only a few thousand 
angstroms in thickness and that it appears to take the lattice spacing of the CdS 
host crystal .  

The formation of the Cu2S layer is followed by a water rinse and an oven 
drying at 250°C for  2 minutes. 
argon atmospheres instead of in ordinary a i r  atmospheres, it appears that oxygen 
plays an important role in securing high efficiency cells, though it is believed that 
the oven treatment also is required to remove water from the ba r r i e r  layer.  

From measurements of cells that were heated in 

4. Grid Attachment 

The grids a r e  formed by photochemically etching from rolled copper 
stock by an outside vendor and a r e  then given a flash coating of gold. The purpose 
of the gold plating is to protect the ba r r i e r  f rom contact with any bare  copper. It 
has been found that copper in contact with the ba r r i e r  has  a temporarily degrading 
effect on cell output in the presence of heat. 

A commercial gold filled epoxy resin is then rolled out to a thin layer 
The grid is then laid on this layer of epoxy cement on a sheet of Teflon plastic. 

and pressed  in so that the gold epoxy t ransfers  to the grid when the grid is re- 
moved. 
techniques a r e  not difficult to  acquire and a simple inspection operation following 
this s tep  ensures that complete coverage of the grids is secured. 

This process is highly dependent on the  skill of the operator but the 

The g d d  filled epoxy coated grid is then placed in position on the ba r r i e r  
surface of the CdS f i l m ,  and then placed between t w o  sheets of Teflon film. 
package is then placed in a special die, covered with aluminum foil and the residual 
atmosphere e~har?stec! from the package. Pcis iiive pressure  of 100 psi  of nitrogen 
is applied to the top of the aluminum foil diaphragm. The whole die is heated to a 
temperature of 196°C and held for 2 0  minl~fes .  The pressure is zxaintaiiled aii iiie 
diaphragm throughout the cycle. 

This 

After completion of the gridding cycle the epoxy cement is only set, not 
fully cured. 
(18 hours minimum) at a temperature of 1 3 5 T .  

The cure  is completed by soaking the cells in a vacuum oven overnight 

it is important that the gold epoxy cement be f r e s h  and well mixed, and 
It is, of course, important that the grids be clean of f r e e  from moisture pickup. 

grease contamination since a poor bond may otherwise resul t .  

5. Cover Plastic Attachment 

The cover plastic is a 1 mil thick film of either Mylar or  Kapton. It is 
prepared by spraying with 0.  5 mil  thick clear  epoxy cement which dr ies  to a tack- 
f ree  consistency thereby permitting the plastic to be handled and stored without 
difficulty. The cover plastic is applied to the gridded cell  and placed in the same 
die in which the gridding was accomplished. 
cover plastic except that the cell  is held at temperature for 10 minutes instead of 
20 minutes. 
oven at 135°C.  

A similar  curing cycle is used for  the 

The cure is completed with a s imilar  overnight soaking in the vacuum 

CLEVITE CORPORATION 5 ELECTRONIC RESEARCH DIVISION 



6.  Final Cell Preparation 

The final steps in the cell preparation include cleaning and numbering 
the cells, giving the negative electrode tab a copper electroplating followed by a 
flash gold electroplating and then trimming the edges to size.  The plating of the 
negative electrode tab is for  solderability and tarnish resistance. 

Following the clean up operation the cells a r e  inspected for visual 
defects and then tested electrically for  voltage, current and maximum power under 
standardized test  conditions. 

The CdS thin film solar cell fabrication processes have en described 
in much greater detail in the Final Report of the previous contract . In this 
period a number of variations to  the standard processing conditions have been 
evaluated and these w i l l  be  discussed in other sections of this report. 

C. Quality Assurance 

Early in this contract period i t  became evident that there was a wide 
variation in the quality of the cells produced. This variation w a s  obviously the 
resul t  of wide variations in the raw material  and component par ts  of the cell as 
well as in the conditions and parameters of the fabrication process itself. 
fore,  the preliminary steps for a quality assurance program were made in an 
attempt to eliminate the wide causes of variation and to bring the entire procese 
under some semblance of control. A full-time inspector was added to the fabrica- 
tion line and a se r i e s  of studies were carr ied out to define acceptable quality levels 
for the r a w  materials and component par ts  of the cell and for the fabrication process 
itself. Figure 2 i l lustrates the various steps in the production where inspections 
were set up. 
that were evolved are tabulated in Appendix I. 

There- 

The detailed quality assurance and Pilot Line operator inspections 

D. Yields 

Operation of the standard process cell fabrication line was beset by the 
usual types of difficulties inherent in making a new product in the laboratory. 
cell design, and the basic fabrication process remained virtually unchanged over 
the period of this report. However, there were major changes in the tooling and 

The 

nn37;-- m - 4  ._I^ -3 
b.yu L ~ ~ L A G A A  L UPCU. 

A new larger  vacuum evaporator that produced 27 standard 3" x 3" CdS 

This also entailed a change from positioning 6 films on a single sheet of 
films at a time w a s  substituted for the ear l ie r  evaporator that produced only 6 such 
fi lms. 
metallized plastic substrate to 9 films on a sheet; and the handling of 9 films on a 
single sheet through ba r r i e r  formation from the ear l ie r  method of processing them 
one at  a time. The prove-in of the new equipment and tooling took much longer than 
expected and as a result, the yields were very  low for quite a few months. 

Table I summarizes the yields from the standard process line for each 
month of this contract period. 
made on the NASA contract only. 
made for other accounts a r e  not included in Table I. 

The figures a r e  for standard process 3" x 3" cells 
Other sizes of cells, experimental cells and cells 

CLEVITE CORPORATION 6 ELECTRONIC RESEARCH DIVISION 
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TABLE I 

Month 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Total 

YIELDS FROM STANDARD CELL FABRICATION LINE 

CdS Film Evap.  
Total Rejects 

164 3 

195 12 

271  16 

267 42 

366 93  

41 2 60 

31 3 6 4  

2 40 1 

178 0 

144 0 

302 1 4  

248 9 

Barr ie rs  
Total R ejects 

161 22 

183 7 

255 18  

225 44  

273 27 

352 1 3  

249 53  

2 39 27 

178 36 

144 1 4  

288 85 

2 39 65 

Grid  & Laminate 
Total  Rejects 

139 1 

176 5 

237 15 

1 8 1  4 

246 7 

339 14  

196 8 

212 21 

142 6 

130 0 

203 0 

174 3 

3100 314 2786 4 1  1 2375 84  

k.inal Testing 
Total  Rejects 

138 37 

171  7 0  

222 122 

177 77 

2 39 139 

325 225 

188 108 

191 9 1  

136 36 

130 30 

203 38 

1 7 1  33 

2291 1006 
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A total of 3100 CdS f i lms 3" x 3" in nominal size were started through vacuum 
evaporation and these gave 1285 acceptable quality cells fo r  an overall yield of 41%. 
There were 314 fi lms rejected after evaporation, and another 411 after ba r r i e r  
formation. The vast majority of these rejects were due to pinholes in the CdS fi lms. 

There were only 84 cells rejected during the gridding and laminating opera- 
tions. Most of these were because of voids in the epoxy cement used to attach the 
cover plastic, though a few were also due to equipment failures.  A total of 1006 
cells were rejected at final testing. Low output cells, shorted cells and cells with 
various dimensional shortcomings, t ea r s  or similar visual flaws accounted for 
most of these. It is difficult to assign definite causes for the low output cells in 
many cases, but i t  is believed that the vast majority of the cells scrapped at final 
testing were directly o r  indirectly the result  of flaws - usually pinholes - in the 
CdS films. During the latter 4 months of the period, more rigorous inspections 
of the CdS films were instituted (as part  of the quality assurance program) both 
before and after the bar r ie r  formation step. 
testing and focused attention to the causes of pinholes so that corrective action could 
be taken. As a result, in the last  4 months the overall yield increased to nearly 60%. 

This resulted in f e w e r  re jects  in final 

Even so, pinholes in the CdS fi lms probably remain as the major cause of 
re jects  in this process. 
f rom nonhomogeneities at the surface of the substrate or f rom CdS powder particles 
spattering onto the substrate from the evaporation sources and subsequently dropping 
off leaving a pinhole. 
either the short circuiting of the grid to the substrate by way of the conductive epoxy 
cement, or by precipitation of elemental copper during ba r r i e r  formation due to the 
zinc showing through the pinhole. 

Pinholes may result  f rom foreign material  in the CdS, 

The pinholes may cause low output o r  shorted cells f rom 

E. Cell Outputs 

Over the period of the nresmt  cnntrsct  vprv little effert was ~ ? l z c p d  "E tr.s.;i~p u 

to improve the average efficiency level of the standard production ceils. Most 0: 
the effort  w a s  placed on trying to make the cell reproducibly, to characterize the 
stability of the cell, and to determine the causes of instability. Hence, only a 
slight improvement in the cell efficiencies was accomplished over the year and this 
is believed to have been the result of improved quality assurance measures  which 
were successful in eliminating many of the factors causing low efficiencies. 

Figure 3 is a histogram giving the distribution of efficiencies experienced 
on standard production 3'' x 3" Mylar covered cells fabricated during the year.  
These cells were tested at 25°C in equivalent AM1 sunlight. 

Figure 4 presents similar data on the standard cells with Kapton cover 
plastic. These cells were also tested in equivalent AM1 at 25°C. 

A total of 1285 3" x 3" cells were fabricated under standardized conditions 
during this period. 
of efficiencies is sti l l  far from what would be expected from a product under control. 
When the present process is brought under better control, it would probably yield 
efficiencies averagmg about 5 .8% f o r  Mylar cover plastic cells in AM1 sunlight at 
25"C, and most of the cells would be between about 5. 570 and 6.  1%. 

A careful examination of the data suggests that the distribution 

C L E V I T E  CORPORATION 9 ELECTRONIC RESEARCH DIVISION 
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i n .  STA BILTTY CHARACTERIZATION 

The major task of this contract is to determine just how stable the present 
CdS thin film solar cell is, under the conditions that it would have to operate, and 
to improve the stability where needed. In order to accomplish this the design of thc 
re11 w a s  fixed and the process for its fabrication was frozen and a degree of control 
and reproducibility was achieved. A number of cells were fabricated under these 
conditions and were evaluated for their stability under various test  and storage 
conditions. 
these were sent to NASA, Lewis Research Center, for thermal cycling and other 
space simulation tests.  
and for  high temperature vacuum storage tes ts .  
the results to date a r e  presented in the following paragraphs: 

Each month a minimum of 100 standard cells were fabricated and 75 of 

The balance was kept at Clevite f o r  dry and wet shelf storage 
While these tes ts  a r e  still continuing, 

A .  Dry Shelf Storage 

Each month 4 standard process cells have been placed in a laboratory cabinet 
desiccator which is kept at room temperature. 
intervals thereafter and tested for their I-V characteristic curves under standard 25°C 
equivalent AM1 sunlight conditions. This test  w a s  started prior to the present con- 
tract ,  and Table I1 presents data on cells of the present design fabricated by the same 
process now being used, but prior to the present contract. 

The cells a r e  removed at monthly 

It can be seen that there is some variation in cell efficiencies a s  measured 
month by month. Most of this variation is attributed to variations in the calibration 
and accuracy of the standard test  conditions, rather than to any change in the cells. 
Of the 22 cells with more than a year's dry shelf storage, only 5 show any real trend 
toward degradation of output. These cells a r e  D296B, D304A, D344C, D381A and 
D410B. Of these, only 1 cell (D344C) appears to have degraded by more than 10%. 

Table 111 gives the data on the dry shelf storape of t h n s e  cells ! z h y : p ~ * = A  .-?--.-. d . 

Most of these cells were fabricated in the period when 
LILC I L ~ S X  six months 01 this contract. 
toward degradation of output. 
much difficulty was experienced with the standard process line. 
shelf storage in this period appears to be r ea l  and has also been noticed by Lewis 
Research Center on the cells shipped to them. 
was caused by lack of control over  the gold filled conductive epoxy cement used to 
~ t t z c h  t k  gi-i& &id U V C L  L i l t :  d e a r  epoxy cement used to attach the cover plastic. 

Of these, more  than half show a real trend 

The degradation on 

It now appears that this degradation 

Much of the trouble was from batches of epoxy which were over age at the 
tmie of use, but at least part  of the problem was inadequate mixing and inadequate 
curing of the epoxies. 
materials and over the fabrication process itself, the cells again appear to be holding 
up on shelf storage. 

Since the establishment of better controls over the incoming 

When the present design CdS thin film solar cell is properly made, there 
seems to be no measurable degradation on room temperature dry shelf storage over 
periods of 1-1/2 years o r  more.  However, it is evident that adequate controls ovev 
the  r a w  materials, component parts and fabrication process must be maintained in 
order  to ensure shelf stable cells. 
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Cell  
No.  

D507F 
D513E 
D521F 
D522E 

D551E 
D563A 
D579B 
D583C 

N14B2 
N14B5 
N20B1 
N31BK4 

D597E 
D609B 
N35B3 
N44B3 

N64BK5 
N65BK5 
N71AK2 
LU 78AK5 

N80AK6 
N85BK3 
N86C5 

- 

TABLE I11 

DRY SHELF STORAGE - SHORTER TERM TEST DATA 

AMl,  25°C Efficiency a f t e r  indicated number  of months rn storage: 
U 1 L 3 4 5 6 7 8 9 10 

5 . 7  5 . 3  5 . 3  5.1 
5 .1  5 . 0  5 . 1  5.0 
4 . 6  4 . 4  4 .6  4.6 
4 .8  4 .7  4 . 8  4.7 

4 .5  5.0 4 .7  4.7 
4 . 8  4 . 9  4 . 6  4.6 
5 .1  4 . 9  4 .6  4.7 
4 . 8  5 .0  4 .7  4.7 

5 .5  5.2 4 . 8  4.8 
4 . 4  4 .1  3. 8 3.9 
4.9 5 .1  4. 8 4.8 
4.1 4 .2  4 . 0  4.1 

5.0 4 . 4  4 . 4  4.3 
4 . 6  4 .1  4.1 3.9 
5 .0  4 .9  5 .0  4 .9  
4 . 4  4.4 4 . 4  4.3 

4 .0  4.0 4 .1  4.1 
4.2 4 .0  4.2 - 
4 . 1  3 . 8  4 . 0  4 . 0  
4 .7  3.6 4.2 4 .5  

4 .2  - 3.8 4.0 
4 . 4  - 3.9 4.2 

4 .9  4.9 
4 . 8  4 . 8  
4 . 4  4 . 5  
4 . 5  4 . 6  

4.6 4 . 6  
4.5 4 .6  
4 .5  4. 6 
4 .6  4 .6  

4 .7  4 .7  
3.8 3. 8 
4.7 4 . 9  
4.0 4.0 

3.9 4.5 
4 .0  4 .2  
4.9 5.2 
4 . 4  4 . 4  

- - 
- 4 . 0  

- 4 . 2  

- 3.9 
- 3.9 

- - 

5.9 4.7 5 . 4  5.9 - 5 . 5  

C LEVITE CORPORA TION 

4 .7  
4. 8 
4 . 3  
4 . 5  

4 . 8  
4 .7  
4 . 8  
4 . 8  

- 
4 . 0  
5 .0  
4.2 

off 
off 

- 
4 .0  

3 . 9  

4 . 7  off 
4. 6 - - 4.6 
4 . 3  - .F 4 . 0  
4 . 4  - - 4 . 5  

- 4.5  
- 4 .5  
- 4 . 5  
- 4 .5  

- 4. 6 

- 4. 6 
- 3.7 

off 

4 . 5  
3.. 7 
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B. Moisture Resistance 

Earl ier  design CdS thin film solar cells were laminated using a Capran (nylon) 
adhesive to attach the 
moisture degradation($. When epoxy cement was substituted f o r  the nylon, it was 
found that the cells were affected only very slightly by moisture. 
experienced no drop in output after complete immersion in water for 8 weeks, w d  
other cells showed a slight ount of degradation in 8070 relative humidity storage 

over plastic, and these cells were extremely sensitive to 

Some cells 

for  periods up to six months m . 
Table IV gives the conversion efficiency data for  those cells that have been 

on 8070 relative humidity test  for a year o r  more. 
storage, there is a considerable amount of scatter to the data, but over and above 
the scatter there does appear to be a slow trend for degradation. In an effort to 
measure this trend more accurately, the data points for each cell w e r e  plotted on 
graph paper and a straight line drawn through the points a s  carefully as could be 
estimated by eye. The "corrected" values were picked off these graphs and a r e  
tabulated in Table V .  
estimated degradation rate for 80% relative humidity room temperature storage. 

A s  in the case of the dry  shelf 

These "corrected" values were then averaged to give the 

An approximate average drop of 9% per year is indicated from these figures. 

Thus the present data for a much longer period of time fixes 

On the basis of much less  data a year ago it was estimated that the loss  of output 
due to 8070 relative humidity storage w a s  probably l e s s  than 5% and more than 2% 
fo r  a 1 2  week period. 
the r a t e  very close to the latter figure. 
is sti l l  not high. There are some indications from a number of cells tested that 
much of the moisture degradation may occur in the first month o r  so and that the 
ra te  of degradation thereafter may be very much less .  In some cases there actually 
appeared to be a definite though slight trend toward an increase in cell output during 
about the second quarter of the test. Of course, any degradation that might have 
occurred on dry shelf storage, due to faultv epoxies. etc. . ~.vould nrPsTimnhly b m  
u c i u u e a  in these :zgures. 
io 8070 relative humidity storage is no more  than 9% per  year and is probably 
appreciably less .  

However, the accuracy of this determination 

Hence, w e  can say that the ra te  of output degradation due 

In Table VI the data a r e  presented on the wet shelf storage of those cells 
fabricated during the first six months o r  so of this contract on which six months o r  
z x r c  dztz h j i t ;  bt.cii acc;urriuiaied. 
on these is more pronounced and is attributed more to the same lack of control over 
the cell fabrication process rather than to true moisture degradation. 
these cells also show an initial increment of degradation well in excess of that which 
occurs subsequently. 

As in the case 01 dry  shelf storage, the degradation 

A number of 

It is planned to subject many of the cells which have shown degradation on wet 
shelf storage to a vacuum heat treatment in ar: effort to delineate how much of the 
drop in cell output is reversible and hence truly the result of moisture and not of 
other causes. 
degradation in CdS 

There were very strong indications ear l ier  that true moisture 
11s is completely reversible unless the degradation affects the 

grid contact itself. ($7 
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Cell  
No. 

D436E 
D450C 
D454E 

D480B 
D495A 
D487C 
D476A 

D506B 
D509E 
D516A 
D526C 

D554A 
D562E 
N14B8 
D580E 

D585C 
N17B3 
D602?3 
D615C 

N38B7 
N51B8 
N52B4 

TABLE VI 

W E T  SHELF STORAGE - SHORTER TERM TEST DATA 

AM1 - 25°C Efficiency after indicated months of Wet Storage: 
0 1 2 3 4 5 6 8 9 10 11 , 

5 . 3  4 . 7  4 . 6  4 . 6  4.5 4 . 3  4 . 3  
5 . 3  4 .2  4 . 1  4 . 3  4 .3  4 . 0  4 . 0  
5 . 3  4 . 1  - - - 3.7 3 .7  

5 .1  4 . 6  4 . 5  4 . 7  4.4 4 . 3  4 . 3  
5 . 4  4 . 8  4 .7  4 . 7  4.5 4 . 5  4 . 5  
5 . 5  5 . 1  5 . 0  5 . 1  4 . 8  4 .8  4 . 8  
5 .0  4 . 8  4 . 7  4 . 8  4.6 4 . 5  4 . 5  

5.7 - 5.9 4.9 4.8 4 .7  4 .8  
5 .5  - 4 . 8  4 . 4  4.4 4 . 3  4 . 3  
5 . 3  - 4.6 4 . 4  4.4 4 . 3  4.2 
4 . 4  - 3.9 3 .8  3.8 3 .8  3 .8  

5.7 5 .4  5 .0  - 4.9 5.0 5 . 2  
4 .7  4 .2  3.9 3.9 3.8 3 .7  3 .8  
5.0 5 . 1  4.7 4 .7  4.7 4 . 6  5.0 
5 .0  4 . 3  4.0 4 .1  3.9 4 .0  4 .1  

5 . 1  5 .1  4 .7  4 .7  4.5 4 . 5  4 . 7  
4 . 8  4 . 6  4 .2  4 . 3  4.1 4 . 0  4 . 1  
4 . 6  3 . 2  4 . 0  3 . 9  4 . 0  4 . 1  
5 . 3  4 . 9  5 .0  4 . 8  4.8 5 . 1  - 

4 .6  4.1 4.2 4. 1 3.9 4 . 0  - 
5 . 3  4 . 4  4 . 8  4 .6  4.6 4.8 - 
4.9  4 . 7  4 . 5  4 . 6  - 4 . 5  3.9 

4 . 3  
4 .1  
3 .5  

4 . 3  
4 . 5  
4 . 8  
4 . 5  

4 . 9  
4 .4  
4.5 
4 . 0  

- 
- 
- 
- 

- 
- 

4 . 5  

4. 8 
4 . 2  

N59BK7 3 .4  3 .2  3.6 3 . 5  - 3 . 7  3 .7  3 . 7  

4 .2  4 . 4  - 4 . 1  
3 . 8  3 .8  
3 .6  3. 7 

4. 1 4 . 4  - 4 . 0  
4 . 5  4 .7  - 4 . 3  
4 . 7  5 . 0  - 4 . 5  
4. 1 4 . 7  - 4 . 3  

- 4 . 5  
- 4 . 0  
- 4 . 1  
- 4 . 7  

4 . 6  

4 . 5  
3 .7  

4 . 2  
3. 6 

- 3. 6 
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C .  High Temperature Storage 

1. Storage at 100°C, T o r r  

Each month 4-%tandard process cells were placed on storage in a vacuum 
oven held at  100°C at 10 
tion. They were removed periodically and tested under standard 2 5 T  a i r  m a s s  1 
equivalent sunlight conditions and then returned to the vacuum oven. The data on 
those cells which have been on this tes t  for 8 months or more a r e  presented in 
Table VJI. 

Tor r .  The cells were in the dark in open circuited condi- 

As in the case of the humidity and the dry shelf storage tests,  there a r e  
wide var'iations between cells, and these variations a r e  attributed to accidental 
causes arising from incomplete control over the fabrication process.  As before, 
the group of cells showing best performance on this test are more likely than the 
others to be indicative of the intrinsic degradation under the test conditions. 

The best performance was obtained from a group of 4 cells which w e r e  
fabricated in 1966 and which have been on test for more than a year,  These were 
cells D379E, D388F, D392A and D401F. The output of each of theere cello as read 
monthly was  plotted on a graph and a smooth curve w a s  drawn to correspond to 
these points as closely as possible by visual estimation. These curves were not 
straight lines as in the case of the moisture test .  Rather they were linear for the 
first few months holding their initial level, then dropped steadily for the next 4 to 6 
months, and then dropped more rapidly. 

Table VI11 gives the "corrected" smooth curve values for these 4 cells 
and the average value has been calculated for each month of 100OC vacuum storage. 
The drop in average cell output for these best 4 cells w a s  just 10% after the f i r s t  8 
months, and an additional 12-1/2% over  the following 4 month period. 

In Table IX are presented the data on the 100°C vacuum storage of more 
recently fabricated cells, which have less than 8 months accumulated data, 
behavior af many of these cells w a e  very poor on the vacuum thermal storage test, 
and the worst data was on those cells made in the period when most of the difficulty 
with poor process control was experienced. On several  cells in this grouping a 
very e r ra t ic  behavior was recorded with the output dropping and then rising much 
more than can be accounted lor by the inaccuracies of measurement and calibration. 
Cells D463C, D462A, D481C, D532D and D574D exhibited this intermittency. It 
seems probable that this errat ic  behavior may be caused by internal intermittent 
contacts, at cracks or delaminations, because comparable behavior was noted on 
some cells on thermal cycling tests.  This wi l l  be  discussed in more detail later in 
this report .  

The 

2 .  Storage at 150°C 

The purpose of the higher temperature vacuum storage test  is to accelerate 
those degradation effects which otherwise might take too long a t ime to become 
evident. 
selected experimental cells, have beeqput on this tes t .  
in an oven at 150°C in a vacuum of 10- 
glass plates. 
p ressure  conditions, and then returned to the vacuum oven. 

A number of cells f rom each month's standard production, and a number of 
The test  consists of storage 

The cells a r e  removed weekly, tested under standard temperature and 
Tor r  with the cells lightly clamped between 
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Cell 
No. 

D379E 

D388F 

D392A 

D40 1F 

- 

Avg. 

TABLE VI11 

100°C VACUUM STORAGE - CORRECTED DATA - 4 BEST CELLS 

AM1, 25°C Efficiency after indicated months: 
0 1 2 3 4 5 6 8 9 10 11 1 2  1 3  14 8 

5 . 2  5 .2  5 .2  5 .1  5 . 1  5.0 4 . 9  4 . 8  4 . 7  4 .5  4 . 4  4 .2  4 . 1  3.9 3 .7  

5 . 0  5 . 0  5 .0  4 .9  4 . 9  4 .8  4 , 7  4 . 6  4 . 5  4 . 3  4 .2  4 . 0  3 .9  3.7 

5 . 1  5 . 1  5 . 0  5 .0  5 . 0  4.9 4 . 8  4 . 7  4 . 6  4 . 5  4 .4  4 . 3  4.2 4.1  

4 .8  4 . 8  4 .7  4.7 4 . 6  4.6 4 . 5  4 . 4  4 . 3  4 . 2  4 . 0  3 . 8  3.5 3 . 3  
, 

5 .03  5 .03  4.98 4 .93  4.90 4.83 4.73 4. 63 4. 53 4. 38 4. 25 4 .08 3.93 3.73 
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Cell 
No. 

D455D 
D462A 
D46 3C 
D481C 

D484B 
D485E 
D518F 

D526B 
D532D 
D554E 
D568E 

D574D 
D579F 
D580B 
D588DK 

H108A4 
H108A5 
H108B2 
H108B5 

I_ 

TABLE IX 

100°C VACUUM STORAGE - MORE R E C E N T  C E L L S  

AM1, 25°C Efficiency after indicated months: 
0 1 2 3 4 5 6 7 8 

5.9 5 . 0  
5.9 5 .0  
5 . 3  3. 6 
5.2 4 . 9  

6 .1  5 . 3  
5 . 3  5 .0  
4.7 4.7 

4. 3 4 .2  
4 . 3  2 .0  
5 . 4  5 . 4  
4 .5  4 .9  

5.6 3 . 5  
5 .0  4 . 7  
5 . 3  5 .1  
3 .8  3 .7  

5 .0  5 . 3  
5.0 5 . 3  
4 , 9  5 . 0  
5.1 5 . 3  

4. 5 
4.9 
2 .  8 
4. 6 

4. 5 
4. 7 
4 . 4  

4 .1  
2.9 
5.1 
4. 5 

4. 3 
4. 6 
4 .9  
3.4 

- 
- 
- 
- 

4 . 3  
3. 4 
4 . 5  
2 .9  

4 .7  
4 . 7  
4 . 3  

4 . 0  
1 . 7  
5 .1  
4 . 4  

4 . 4  
4 . 5  
4.9 
3 .1  

5. 3 
5 .2  
5 . 0  
5 . 0  

3 .9  
3. 8 
1 . 5  
4 .3  

1 . 7  
4 .7  
3.6 

3.8 
1 .5  
5 .2  
4 .5  

4 . 5  
4 . 6  
4 .9  
2 .1  

5 . 3  

5 . 0  
5 . 3  

- 

3 . 1  
4 . 6  
0 .9  
3.7 

0 . 9  
4 .2  
3 .1  

3 .5  
off 

off 

off 

- 

- 
- 

off 

- 
5 . 0  
- 
- 

2 . 0  off 
3 . 3  off 
0 . 5  off 
3 .7  3 .4  

0 . 4  off 
4 .2  4.0 off 
2 . 4  2 .0  off 

3 .0  off 

4. 6 

4 . 3  
4 . 5  

5 .0  

4 . 7  
5 .0  

- 
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Nearly all of the standard construction cells have failed on this test within 
a week o r  two. The better performance records a re  summarized in Table X .  
it  is assumed that the better performing cells a r e  more nearly representative of the 
intrinsic behavior of the cells on this tes t  and that the more rapidly deteriorating cells 
a r e  faulty in their construction. I t  is seen that there a re  some signs of errat ic  out- 
puts even among these better cells. 

Again, 

A few cells have held up f o r  4 weeks at 150°C with 10% o r  less degradation, 
and several  more with 207' o r  less .  The degradation in these cases is characterized 
by a loss of f i l l  factor due to a major increase in the se r i e s  resistance. 
performance on this tes t  was from some of the cells with evaporated aluminum inter-  
layers  in place of the electroplated zinc, and with a molybdenum substrate cell. 
Further  tes ts  of these experimental variations a r e  being planned. 

The best 

In another experiment, 4 ungridded open cells w e r e  placed in the 150°C 
vacuum oven and held there for 7 weeks, and then removed and gridded, laminated 
and tested. 
which had been giving about 4. 1 to 4.27' average conversion efficiency. These 4 
*cells when first tested gave efficiencies of 2 .  7, 2 .  9, 2.0 and 2. 37'. 
gave about 60% of their expected output after 7 weeks at 150°C. The I-V curves for 
these cells were quite similar to those of cells which had been exposed to the 150°C 
storage after gridding. 
not a case of grid contact loosening. 

These w e r e  given Kapton covers and were fabricated f rom a lot of cells 

That is, they 

Thus, it  is concluded that such degradation on this test  is 

It is assumed that there probably is an inherent degradation at this 
temperature due to a diffusion of impurities in the insulating layer that would cause 
an increase in the thickness of this i-layer. Such a change should be characterized 
by a marked decrease in the junction capacitance and a marked increase in the 
internal series resistance. Though it is difficult to measure the capacitance of the 
junction of these large area cells - due to shunt leakage paths, etc. - such marked 
r-hznges in cc~nscj+anrr  f.27-c ; n r?o~C!  hr rn  ~ ~ ~ ~ z y ~ r i !  - 

A number of standard 3'' x 3" cells were tested for their conversion 
efficiency under standard conditions, their reverse  bias breakdown voltage (i. e. , 
the reverse  bias required to cause 5 . 0  m a  of current to flow) and their capacitance. 
The cells were stored in the 150°C vacuum oven for  3 days and the measurements 
were repeated. 
Table XI gives the data for the better cells on this test. 

Then they were stored for another 8 days and again measured. 

A s  can be seen the reverse breakdown voltage varied mostly between about 
2 and 3 volts initially, and in most cases this increased with 150°C storage. 
capacitance readings showed more scatter, due undoubtedly to the very uneven topology 
of the CdS film surface and to various flaws in the films, and in every case decreased 
appreciably with heating. 
heating because of the difficulties in making the measurement. ) 

The 

(Capacitance readings were not attempted after 11 days 

The decrease in capacitance with heating is commensurate with the concept 

Heating would increase the penetration of the 

I 

of an insulating region in the CdS, adjacent to the Cu2S,layer, caused by compensa- 
tion of donors by diffusion of Cu+ ions. 
Cu+ ions and hence the thickness of the insulating region. 
reverse  breakdown voltage would also fit in with this concept since the increasing size 
insulating region would increase the resistance of various shorting paths along grain 
boundaries and other structural flaws. 

The increase in the , 
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Cell 
No. - 
D527A 
D527B 
N81AK3 
N84C3 

N85A2 
N87C2 
N87C3 

N87C8 

A981C 
A981D 
A997A 
A981A 
A997D 
B439F 
A970D 

TABLE X 

150°C VACUUM STORAGE 

AM1, 25°C Efficiency after indicated weeks: 
0 1 L 3 4 5 - - - - - - 
4 . 0  3. 6 3 .6  3. 3 2 . 0  
4 . 0  3 .6  3 .7  3 . 4  3. 2 3 . 0  
4 . 1  3 . 9  3 .5  2 . 8  3 . 2  3 .2  
5 . 0  4 . 4  3.7 3 . 1  2 .  8 2 . 8  

5 . 5  4 .7  4 . 5  4 . 3  4 . 1  3. 7 
5. 3 4 .6  3.5 3 . 7  
5 . 7  4.0 2.7  

5. 8 3 .9  3 .5  

4. 7 5 .0  4 .9  4. 8 4. 5 
4. 3 4. 6 4 .2  4 .0  3. 5 2 . 4  
4. 6 4 .6  4.6 3. 7 
4 . 9  5 .0  5.1 4 .9  4 . 2  3. 3 
4 . 7  4.0 3.9 3.7 
4 . 0  3.8 3 .9  3. 8 3 . 5  3 .5  
5 . 9  5 . 7  5.1 3 .7  2 . 1  

Remarks 

std 
std 
std 
std 

std 
std 

Annealed Cu Grid - Au 
plated 

Solid Gold Grid 

A 1 Interlayer 
A 1  Interlayer 
A1 Interlayer 
A 1  Interlayer 
A 1  Interlayer 
Moly Substrate 
Copper Substrate 

(zinc plated) 

CLEkIT’E CORPORATION 24 E LE C T R ON1 C RES E A  R C H D 1 V IS TON 



t - m o t - a  
m m e m m  
. . . . .  t - t - t - - c o t -  

m m m m m  
. . . . .  

a 
(D 

m 

Capacitance not measured 

ooolno 
o l n l n o m  
. . . . .  ooo*o dui&Ocli “ 

00lnl-l 

& + A 0  
m 
* 

(D 
0 lnool-l 

4 4 4 4  4 

l-lcvm w 
( D m 0  d . . .  I .  
c v d d  d 

oocooo 
: E  ?> -u c= 7? . . . . .  

d 
l-l 

* 

0 
cv 
m 

w c v l n o a  
m m c v m m  
. . . . .  m 



The thicker insulating l a y e r  however would have undesirable effects 
since it would increase the internal resistance of the cell and hence reduce cell 
efficiency. The efficiency, of course, is reduced and the reduction is marked by 
very severe increases in the ser ies  resistance a s  evidenced by the change in the 
slope of the I-V characteristic a s  it crosses  the voltage axis. 

D. Thermal Cycling 

There has been a long history of thermal cycling tests on CdS thin film 
solar cells, with a wide variety of different results being obtained. 
Clevite high efficiency ( 4  to 5%) CdS thin film cells were  formed on molybdenum 
metal substrates. The first  batch of these that were delivered to the Chemistry 
and Energy Conversion Division of the NASA Lewis Research Center were placed 
on their internal temperature cycling test. 

The first 

The cells w i t  ood more  than 3000 
cycles between about -60°C and +60°C without any failures 7% . 

The next batch of these same design cells however gave very errat ic  results 
on temperature cycling. Most of them failed within a few hundred to a few thousand 
cycles. 
The grids at that time were held in pressure contact to the ba r r i e r s  by the cover 
plastic which was laminated to the cell with a thermoplastic (nylon) adhesive. 
temperature of the lamination process was very cri t ical  and in spite of several  
months of efforts the conditions of the f i rs t  batch of cells could not be duplicated. 
Further ,  it appeared that the conditions of the Lewis Laboratory thermal cycling 
tes t  w e r e  not as severe a s  those of similar facilities at the Boeing Company in 
Seattle, as none of the cells tested on the Boeing facility held up. 

The cause of failure was believed to be a loosening of the grid contact. 

The 

F o r  these and for other reasons the thermoplastic cover adhesive w a s  
replaced with a clear epoxy cement, and a conductive si lver epoxy cement w a s  used 
to attach the grid. However, these cells also failed on thermal cycling test, but in 
a different Y3;51\'e ??!hen the C C X C  -\T'ert ?--mn?;-td f r n m  t_h_c ? . r ~ . r l A l _ ? . r i  rhaY?htr, 2x6 
tested a few dkys later under standard conditions, they exhibited no degradation at 
all. It was finally determined that the silver in the conductive epoxy caused a 
temporary degradation of cell output after heating and that at room temperature 
this degradation would anneal out. 
determined, but it was found that the use of gold in place of the silver eliminated it. 

However, the f i rs t  cells made with a conductive gold epoxy grid cement also 
failed on vacuum thermal cycling test. In this case the failures were catastrophic 
and the cells generally did not recover, though in a few cases the cell output would 
come and go in a haphazard manner. 
circuits, a few of which were intermittent. 
f o r  analysis, the cause of the short circuits was found to be pinholes in the CdS 
f i lm.  
during CdS film evaporation. They were essentially eliminated by better process 
control of the evaporation step, a n d  by better inspection techniques to reject CdS 
f i lms containing pinholes. 

The mechanism of this effect was never really 

The failures were due to internal short 
F o r  those few cells returned to Clevite 

These pinholes resulted f r o m  spattering of CdS particles onto the substrates 

This is where the CdS thin film solar cell stood at the beginning of the 
present contract, 
cells in this 1967 contract period and the results of these a re  detailed below: 

Four groups of thermal cycling tests have been run on Clevite 
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1. 

The cells were plastic substrate cells with Mylar cover plastic overcoated 

Boeing Test - NASA, Lewis Contract - April 1967  Production C d l s  

with clear Pyre-NIL. 
in use through the entire period of this contract. 
evaporated in the small  vertical evaporator and the degree of process control was 
minimal. 
Clevite just prior to shipment to NASA. 

They were otherwise made by the same process that has been 
However, the CdS fi lms were 

Table XI1 summarizes the initial test  data on these cells measured at 

At the time it w a s  evident that these cells were of poor quality. Many of 
them had dropped in output by a s  much as 10% in the 1 to 2 week period after fabri-  
cation. Several cells were wrinkled or  chipped and the f i l l  factors were generally 
poor - due to poor shunt characteristics. However, these were all that were avail- 
able in the April monthly period, and hence were forwarded to NASA as per the 
contract requirement . 

After checking at Lewis Research Center, NASA, the cells were forwarded 
to the Boeing Company, Space Division, in Seattle for  thermal cycling test. The 
t e s 9  were conducted in a clean vacuum chamber with the pressure at all times below 
10- The wa l l s  of the chamber were black and cooled with liquid nitrogen. 
Each tes t  cycle consisted of a 60 minute exposure to light followed by a 30 minute 
period of darkness. 
Cell performance was measured at  periodic intervals with a light source which 
simulated AM0 sunlight. 

Torr .  

The cell temperatures alternated f rom about -70°C to about +7OoC. 

After 300 cycles the maximum power outputs had dropped to between 52 
and 82% of their initial values with most of the degradation occurring in the first 100 
cycles. After 368 cycles the vacuum chamber was brought to room temperature and 
filled with dry nitrogen. Table 
XI11 gives the values of the corrected maximum cell outputs at various stages of this 
test .  

The output of some of the cells recovered partially. 

While there were wide variations in behavior of this group of cells on 
temperature cycling, in general they were characterized by an increasingly worsening 
f i l l  factor, with the I-V curve in some cases  becoming a straight line. 
number of cycles increased, a different I-V curve would be traced in one direction 
than in the opposite direction. This is illustrated in Figure 5. 
t ; . i l ;~i ic  I-V' curves w o u i a  be tracea, a s  iiiustrateci in Figure 6 .  

Also, a s  the 

In other cases  very 

Several of these cells, when returned to Clevite after the completion of 
the test ,  were delaminated at the edges of the cells. 
between the CdS layer and the conductive substrate and may have extended inward 
from each side edge as much a s  3 to 5 mm at the middle of each edge. 

The delamination w a s  generally 

2 .  

These were also plastic substrate cells , but with Kapton cover plastic. 

Further,  the cells were held for  several  

Boeing Test - Lincoln - Lab Contract - July 1967  Production Cells 

Somewhat better control had been exerciesed over the production process and a much 
more rigorous inspection w a s  imposed. 
months to ensure that there was no tendency to degrade on shelf storage and the cells 
were deliberately subjected to several alternate periods of deep freeze and vacuum 
oven storage in order to weed out cells that were likely to fail  rapidly. 
such cells were in fact so weeded out. 

A number of 
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TABLE XI1 

Cel l  
No. 

D533E 
D534B 
D535D 

D536A 
D536C 
D537D 
D537E 
D545A 
D557A 

CLEVITE TEST DATA ON CELLS USED FOR BOEING 
THERMAL CYCLING O F  APRIL 1967  PRODUCTION 

ocv 
.465 
,465  
.460 
.465  
.465 

.470 
,465  

,470  
,465  

SCC 

.855  

. g o o  

.910 

.860 

.835  

.goo 

.925  

.840  

.850 

VmP 

. 350 

.345 

.357 

. 360 

.360 
,345 
, 360 
.345 
.345 

- Imp 

.705  

.730  

.770  

.755  

.730  

.745  

.745  

.680  

.670 

M .  P. 

.245  

.250  

.257  

.270  

.260  

.260  

.270  

.235  

.230  

Mylar Covered Cells with Pyre-ML Overspray 

Tested at 25°C in Equivalent AM 1 Sunlight 

F .F .  

61 
60 
64 
67 
67 

61 
63 

60 
57 

Eff. - 
4.5 
4 . 6  
4.9 

5.0 
4 . 8  

4.8 
4 .9  
4 . 3  
4 . 2  

R a n a r k s  

Bad shunt 
Bad shunt 
Void & patch 
Chipped 
De grading 
Degrading 
Bad shunt 
Degrading 
Bad shunt 
De grading 
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TABLE XI11 

BOEING THERMAL CYCLING DATA ON APRIL 1967 CELLS 

Cycle 
No. 

0 

1 0  
20 

30 

41 

50 

60 

70 
80 

90 

100 

130 

161 

190 
2 2 3  
3 =. 7 

281 

30 0 
368% 

368** 

- 

368+*$ 

Max.  P o w e r  in mW for  indicated C e l l  Numbers :  
D557A D545A D537E D53- D5 6A 

148 150 99 125 208 204 

118 137 66 120 204 192 
119 126 65  118 195 185 

86 110 63  119 155 146 

8 3  97 57 115 144 137 
89 88 72 113  127 1 2 1  
93 97 54  108 135 123 

9 3  95 51 108 1 2 8  128 
88 92 4 8  109 120 1 2 8  
86 90 48  102 136 114 
8 3  92 52 99 129 124 

77 87 46 98 98 100 
79 86 48  94 126 114 

91 95 50 102 134 124 

102 97 50 104 127 123 
q7 ? :  I-- L "  * 

89 89 49 104 106 109 

89 91 52 102 126 118 

80 88 82 90 146 127 
82 90 61 89 144 1 1 1  

114 106 71 102 155 116 

-- -- 

1 ?rl 'q? n o  
A "  

? ?  QC) 
I i' 

*,Cells in D r y N 2  at one atmosphere for 1 hour. 
:: 3? C e l l s  in D r y  N2 at one a t m o s p h e r e  f o r  2 days .  

' I - .~*. C e l l s  out of Tank on 60" T e m p .  Controlled Block. .L 4, .I, 

M e a s u r e d  at t e m p e r a t u r e  (approx. 70°C) at AMO. 

D535D 

188 

178 

181 

160 
146 

138 

137 

131 
124 

1 2 1  
118 

106 
123  

116 
126 
12: 

114 

115 
132 
1 2 3  

115 

D534B U S F  E 

161 153 

146 131 
136 115 

. 103  104 
117 98 

106 86 

119 105 

1 1 3  102 

103  108 
95 100 

104 102 
97 99 
97 93  

108 93 
98 93  

? :-; T. .> 7 
A U Y  u ,  

100 86 

96 94 

118 118 
1 1 6  117 

142 147 

Avg. 

160 

144 

138 

116 

110 

104 

108 

105 

102 
99 

100 
90 
96 

101 

102 

- 

.-. '- 
2.; 

94 

98 

109 

103 

119 
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Table XIV-A gives the initial test data for this group of cells just before 
shipment to Lincoln Laboratory. The room temperature f i l l  factors for these cells 
were markedly better than those of the f i rs t  batch sent to Boeing, but about half of 
these cells had only a fa i r  shunt characteristic - i. e . ,  the I-V curve at the short 
circuit condition was not quite perpendicular to the current axis. 

Lincoln Laboratory forwarded these cells to Boeing where they were 
tested and placed on thermal cycling under approximately the same conditions a s  
the ear l ier  test performed for NASA. 
used for these tests was subsequently found to be in e r ro r ,  and hence the cell out- 
puts they obtained were at  variance from those obtained at  Clevite and at Lincoln 
Laboratory. However, the measurements taken over the course of these tests a re  
believed to be reasonably comparable. 

The calibration of the Boeing simulator 

The cells were given a total of 77 cycles and the cells degraded steadily 
over that period to about 65% of their initial values. 
' 'hysteresis' '  effect noticed for these cells initially, but all 9 cells showed a marked 

voltage end of the curve. 

There w a s  little or no 

hysteresis" a s  the test progressed with the effect showing up in each case at the 1 1  

The results of t test  are reported in more detail in a Lincoln 
Laboratory Technical N 0 t 3 ~ .  Table XV summarizes the average output data for 
the 9 cells on this test  measured at Boeing after different numbers of temperature 
cycles. The degradation w a s  characterized by a loss  of cell efficiency primarily 
f rom a loss  in fill factor, though both OCV and SCC also showed small  but un- 
mistakable drops. 

A f t e r  completion of thermal cycling, 5 of the cells were returned to 
Clevite where they were examined and retested under the standard 25°C AM1 test  
conditions. The data a re  shown in Table XIV-B, and i t  is seen that the cells gave 
nearly a s  much output as  they had prior to thermal cycling' 
were due to a drop in fill factor rnostly, hut also in part to a loss of short circzit 
current. 

The slight differences 

3. 

The next thermal cycling test w a s  performed by the Chemistry and 

NASA Lewis Laboratory - -  Test - October 1967 Cells 

Lnergy Conversion Uzviszon 01 the Lewis Research Center, NASA, on 4 Kapton 
covered cells that were produced in  October 1967. 
68 to 7170 and AM1, 25°C efficiencies of 4. 0 to 4. 370. 
Table XVI-A . 

~~ 

- 
These cells had f i l l  factors of 

The data a re  shown in 

Thermal cycling was carried out with 100 rnw/crn2 light for  a 1 hour 
period followed by 0. 5 hour of darkness. 
about +41"C to -70°C. 
steadily, but somewhat erratically, to between about 90 to 60% of their initial values. 
The cells were allowed to remain under vacuum in the dark at room temperature for 
several  days and then were retested. 
about 570 to 1570 of their initial output values. 
for  an additional 100 cycles. 
the cells dropped to about 90 to 40% of their original values. 
the data for selected periods of temperature cycling. 

Cell temperatures were cycled between 
A total of 208  cycles were carried out and the cells degraded 

It was found that they had recovered to within 
Then the thermal cycling was resumed 

The degradation was more rapid the second time and 
Table XVII presents 
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TABLE XIV 

CLEVITE T E S T  DATA ON CELLS USED FOR BOEING 
THERMAL CYCLING O F  J U L Y  1967 PRODUCTION 

C e l l  ocv SCC VmP Imp M .  P. Fill - No. (volts)  (Amps) (volts) (Amps) (Watts)  70 _.__ 

A - BEFORE THERMAL CYCLING 

H11OAK4 
H11OAK2 
HllOAK5 
H124CK5 
H106BK5 
B935AK 
H108BK8 
H99AK5 
H110AK6 

.480 

.482 

.475  

.479 

.480 

.470 

.477 

.480 

. 480 

.752 

.725  

.740  

.730  

.794  

.760  

.732  

.760  

.750  

.380 

. 382 

. 378 

.375  

.368  

.372 

.374  

.373  

. 380 

.644  

. 620 

. 644 

.620  

. 680 

.660 

. 635 

.640  

.644  

.247  

.237 

.244  

. 2 3 3  

.250 
, 2 4 5  
.237 
.238  
.244  

68 
68 
69 
67 
66 
69 
68 
65 
68 

B - AFTER THERMAL CYCLING 

H11OAK4 .487 .740  . 380 . 648 .246 
H124CK5 .478  .721  . 367 . 632 .232 
H106BK5 .480  .776 . 368 .644  .236 
H108BK8 .480 .702 . 379  .604 .228  
H99AK5 .479 .748  . 360 . 618 . 2 2 2  

Kapton Covered  C e l l s  - 
T e s t e d  at 25°C in Equivalent  A i r  M a s s  1 Sunlight 

Eff.  
70 - 

4.5 
4 . 3  
4 . 4  
4 .2  
4 .6  
4 .5  
4 . 3  
4 . 3  
4 . 5  

68 4 . 5  
67 4.2 
63 4 . 3  
68 4 .2  
6 2  4 . 1  
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TABLE XV 

BOEING THERMAL CYCLING DATA ON J U L Y  1967 C E L L S  

Average for 9 C e l l s  

Eff. , - M . P .  . Fill 
_I_ I m p  - - SCC VmP ocv - Cycle  

0 0 .404 0 . 7 6 4  0.298 0 .647 0 . 1 9 3  62. 5 2 .51  

1 .406  . 7 6 9  .295 . 6 4 8  . 1 9 1  6 1  2 .48  

37 . 3 9 3  . 7 4 2  .275 .502  . 138 47  1 .79  

60 .386  . 7 5 9  .274  . 4 9 5  . 1 3 5  46  1 . 7 5  

77 , 3 8 4  . 7 4 4  .275 . 4 5 7  . 1 2 5  44  1.62 

A l l  cells tested in situ at approx. 60°C, Torr, A i r  Mass 0 
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TABLE XVI 

CLEVITE TEST DATA O N  C E L L S  USED FOR LEWIS LAB 
THERMAL CYCLING OF OCTOBER 1967 PRODUCTION 

Eff.  - F ill  - Imp M .  P. VmP - Cell  ocv SCC 

A - BEFORE THERMAL CYCLING 

N100DK15 0 .450  0 .714  0. 350 0 . 6 4 0  0 . 2 2 4  70 4 . 1  

N100DK23 . 4 8 0  . 7 1 8  . 3 7 9  . 6 3 0  . 2 3 5  68 4 . 3  
N100DK7 . 4 8 3  . 6 7 2  . 386 . 5 9 5  . 2 3 0  71 4 . 2  
N 1 00DK2 6 . 4 8 0  . 6 6 1  . 3 7 7  . 5 8 8  . 2 2 2  70 4 . 0  

B - AFTER THERMAL CYCLING 
- ~~~~ 

N 1 OODK 1 5 . 4 5 1  . 7 2 0  . 345 , 6 3 0  . 2 1 9  67 
N100DK7 . 4 9 0  .692  . 3 7 1  . 5 9 8  . 2 1 9  66 

4 . 0  

4 . 0  

Kapton Covered Cells 
Tc-sicd at 25°C ill Equivalent  Air Mass 1 Sunlight - 
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TABLE XVII 

LEWIS LAB THERMAL CYCLING DATA ON OCTOBER 1967 CELLS 

Imp M .  P. F ill Cel l  No. Cycle 

N 1 0 0 DK15 5 0 .428  0.530 0.295 0 .430  0.127 56 
164 .425 .497 .300  .390  .117 55 
30 8 .440  .358  .310  .310 -096  61 

_ c _ -  VmP - SCC - ocv - 

N 100DK2 3 5 .448 ,569  . 340 .420  . 1 4 3  56 
164 .425 .514 .275  . 360 .099  45 

30 8 .422 .373 .250 .260  .065  41 

NlOODK7 5 .470 * 512 .295  ~ 340 . l o o  42 
164 .410 .480 .265  275 .073  37 
308 .413  .344 ~ 255 .220  .056  39 

N l  OODK26 5 .446 ,503  .321  .405  130 58 
164 .425 .450 .288  . 330 .095 50 
308 440 ” 450 ~ 315 ~ 360 ” 113 57  

2 .  Tested in situ at approx. +41”C, 100 mw/cm Light Intensity 

Eff. - 
2 .  32 

2 .  14  
1 . 7 6  

2.61 

1 .80  
1 . 1 9  

1 . 8 3  
1 . 3 3  

1 . 0 3  

2. 38 

1 .74  
2 .  07  
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Two of the degraded cells were returned to Clevite and were measured 
under standard test conditions, and a s  can be seen in Table XVI-B were within 5% 
of the outputs that they had given originally before the test .  
was characterized chiefly by a loss of f i l l  factor. 
not degraded at all.  

Again, the degradation 
The OCV and SCC of these had 

4. M.I .  T. Lincoln Laboratory Test - Oct. & Dec. 1967 Cells 

The last  thermal cycling test of this period was carr ied out at Lincoln 

In addition to a few special experimental cells, 3 standard Mylar covered 
Laboratory on groups of cells which were fabricated in October and in December of 
1967. 
cells made in December were tested. 
Mylar reinforcing s t r ip  cemented along each side edge of the cells in an attempt to 
prevent delamination at  the cut edges. 
summarized in Table XVIII. 

The latter 2 cells had a narrow "U" shaped 

The Clevite test data on these cells a r e  

The cells were thermal cycled between approx. 67" to 78°C during a 1-1/2 
hour hot period and -85" to -89°C during a 1-1 / 2  hour dark period. 
of the test were varied somewhat during the test due to problems with the heating 
and light sources, and the cells were given only 70% of the light that would be 
experienced in AM0 sunlight in order to keep from overheating them. 
cycles were carried out. 

The conditions 

A total of 81 

There was some hysteresis of the I-V characteristic curve noted for 
these cells initially, but toward the short circuit current end of the curve rather 
than at the OCV end as w a s  experienced for  the cells on the Boeing tests.  The 
hysteresis however did not change appreciably over the period of the test .  A l l  of 
the cells degraded during the test, but to a lesser  extent than any of the previous 
tes ts .  
test w a s  calculated on the basis of the maximum power using the poorer of the two 
I-V curves in each case, whereas the Boeing - calculations were based on the hcs t  
ciirve when hysteresis effects o c c ~ r r e d .  
have been less  than indicated and the Boeing degradations might have been more 
than indicated. 
actual performance of the cells i f  they had been maintained with a fixed load in  the 
vicinity of the maximum power point. ) 

Table XIX summarizes the data. The degradation on the Lincoln Laboratory 

Thus the Liccola Lab degradation Eight 

(It is not known which of the two curves would have represented the 

It is to be noted that the fill factors obtained by Lincoln Lab at  the cell 
operation temperature were approximately the same as  obtained at Clevite at room 
temperature, whereas the values obtained by Boeing in each case were very much 
less .  
respect rather than to e r r o r s  in  the Boeing test circuitry. 

It is believed that this IS due to the later vintage cells being better in  this 

5 .  Other Tests 

Several other thermal cycling tests of CdS thin f i l m  solar cells h a v e  hecm 
car r ied  out in different laboratories. In one test at Clevite a 1x2 cm size cell was 
mounted inside a 1" diameter clear quartz tube and an inert atmosphere kept in the 
tube. 
traced the I-V characteristic curve. 
indicated temperature. 
liquid nitorgen and raised into the beam of a tungsten lamp. 
cycles on several 1x2 cm Kapton covered cells failed to show evidences of cell 
degradation. 

The leads of the cell were connected to an oscilloscope which continuously 
A thermocouple mounted on the back of the ce l l  

The quartz tube was alternately lowered into a dewar of 
Tests of several hundred 



TABLE XVIII 

CLEVTTE TEST DATA O N  C E L L S  USED F O R  LINCOLN L A B  
THERMAL CYCLING OF OCTOBER-DECEMBER 1967 PRODUCTION 

Eff. - Cel l  No. ocv see Vmp Imp M .  P. Fill - 
A - BEFORE THERMAL CYCLING 

N87B1 0 .479  0 .980  0.370 0 .860  0. 318 68 5.8 
N89A1 .500 .920  .390 . 8 1 6  . 318 69 5.8 
N89A2 . 4 9 2  .962  e 380 .850  . 3 2 3  68 5 . 9  

H300B5* .469  .980  .351 . 8 5 8  . 3 0 1  66 5 . 5  

H302A5* .470 1.000 ,352 . 8 7 0  . 306 65 5 . 6  

B - AFTER THERMAL CYCLING 

H302A5* . 4 7 5  .936  .360 . 812 . 2 9 2  66 5. 3 

* M y l a r  Reinforced  Edges  

M y l a r  Covered  C e l l s  
Tested at 25°C in A i r  M a s s  1 Equivalent S~nl ight  

NOTE: Subsequent  indicat ions a r e  that t h e r e  w a s  a ca l ib ra t ion  error  for the  
Solar S imula to r  and that  t he  ini t ia l  t e s t  da ta  (be fo re  t h e r m a l  cycling) 
for Max. Power  w a s  approx.  87' high with both vol tage and c u r r e n t  
r ead ings  involved. 
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TABLE XIX 

LINCOLN LAB THERMAL CYCLING DATA ON 
OCTOBER-DECEMBER 1967 C E L L S  

Final Value a s  70 of Initial Value 
Cell E qui1 . Fill  
- No. Temp. __. % f l  % - % 

N87Bl 77°C 68 100 96 8 7  

N89A 1 76. 5 69 95 100 87 

N89A2 78 68 100 9 3  87 

H300B5* 78 66 100 100 

H 302A 5* 7 1  65 100 91 

* Mylar Reinforced Edges 

90 

85 
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A somewhat more elaborate test  w a s  set  up by the Power Systems 
Division of NASA Lewis Research Center which could test  one cell as  large as  3" x 
3" at a time. Standard 3" x 3" cells did exhibit degradation on this test  comparable 
to that obtained on the more extensive tes ts  described in the above sections of this 
report .  The cells that degraded exhibited delamination at the cut edges within the 
CdS layer.  
the loss in cell output. 

The a rea  of the delamination in these cases approximately accounted fo r  

On another test  at the Lewis Power Systems Division setup a few cells 
were cut into sections in such a way a s  to preserve the positive and negative lead 
contacts. A half cell, 1-1/2" x 3" in size, exhibited l e s s  degradation than full s ize  
cells, and a quarter cell, 3/4" x 3" in size, exhibited s t i l l  less degradation. 

6. Analysis of Degraded Cdls  

Two approaches followed in trying to understand the reasons for degradation 
of cells durin thermal cycling a r e  the study of the electrical  performance of the cells 
and physical post mortems" on the cells after failure. 
insights to the mechanism of the degradation. 

f Both approaches yield useful 

(a) Changes in Electrical Output 

Different cells have exhibited different patterns of electrical  
performance on thermal cycling test. 
e r r a t i c  electrical  outputs, with the later vintage cells being l e s s  e r r a t i c  and showing 
l e s s  degradation. Figure 7 shows the maximum power versus  the number of 
temperature cycles for 2 cells made in 1966, tested at Boeing, and showing very 
severe degradation. The nearly complete sudden loss of output at one point on one 
cell  and the nearly complete recovery a few cycles la ter  is noteworthy. On the other 
cell  a similar experience was recorded except that the cell stayed at  nearly zero out- 
put for about 30 cycles and then recovered. 

In general they have been characterized by 

In Figure 8 is shown the change in the I-V characterist ic curve 
of a cell  that w a s  made in April 1967 and which degraded on the Boeing test. 
hysteresis effect on the initial t race appears to have been characterist ic of the  cells 
made at that time when tested at 60°C to 70°C temperature. 
usually at the OCV end of the I-V curve and got progressively worse as the number 

b J L I c 3  L I l b ~ ~ e ~ e ~ .  In 
some cases  the I-V curve itself became er ra t ic  and would not give the same curve 
on successive t races .  The hysteresis effect at the OCV end of the curve is approxi- 
mately what would occur i f  there was an intermittent partial short circuit which w a s  
activated at the open circuit condition and deactivated at the shor t  circuit condition 
when the curve was traced. The errat ic  t race which would not exactly repeat itself 
is what might be expected f rom an intermittent contact in the cell. A delamination 
of par t  of the CdS away from the conductive substrate might give this effect if there 
were forces that held the delamination closed at times and open at other t imes.  Of 
course,  the errat ic  trace could also be the fault of the X-Y recorder  o r  of the 
electronic load used to generate the curves. 

The 

The hysteresis was 

-+? nT7n1-- 1 - 1 Tiiis is iiiustrated by the lower se t  of curves of Figure 8. 

In Figure 9 a r e  illustrated the before and after I-V curves of one 
of the better of the latest vintage cells tested by Lincoln Laboratory. 
degraded by 1570 over 81 temperature cycles and w a s  much less  e r ra t ic  in i ts  

This cell 
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behavior than earlier cells. This cell also showed a hysteresis effect, but the effect 
occurred at the SCC end of the curve rather than at the OCV end a s  was noted fo r  the 
earlier cells. This pattern of hysteresis is what might occur i f  there were a partial 
delamination which was activated at the SCC condition of the cell and deactivated at  
the OCV condition. It is noteworthy that as this cell degraded the OCV stayed fixed 
and the SCC fell  and the fill factor fell only slightly. It is also to be noted that the 
fill factor of this cell and of other cells which have performed poorly dropped con- 
siderably a s  the cell temperature increased - even before temperature cycling. The 
pattern of cell degradation which is  characterized by a drop in short circuit current 
and a drop in the f i l l  factor could be explained a s  the result of an increase in internal 
series resistance. 
gradation were caused by an increase in ser ies  resistance a much greater change in 
the f i l l  factor would be needed to account for the change in the SCC. 
pattern observed is more likely to have been caused by a loss  in active a rea  such as 
would occur i f  a portion of the CdS film were to become detached from the conductive 
substrate so that the current collection from that area were greatly reduced. 

In this case the f i l l  factor changed only slightly and i f  the de- 

The actual 

(b) Physical Changes 

Some of the cells that were degraded on thermal cycling were 
returned to Clevite for testing and examination. Electrical t es t s  on the degraded 
cells were relatively uninformative as much of the degradation reported could only 
be observed by in situ measurements during the actual thermal cycle test. (The 
electrical changes discussed in paragraph 6a above were in situ measurements 
supplied by the testing agency in each case. ) The physical examination of the cells 
w a s  more informative. 

Several of the most severely degraded cells were characterized 
by a delamination of the CdS film from the conductive substrate at the edges of the 
cell.  This is illustrated in Figure 10-A.  In those cases, the actual a r ea  of the 
delamination accounted for most of the permanent loss (i. e . ,  that which was not 
recovered after the cells were removed from the test) of output. Fer exampkt  
Cell D536A when returned from the Boeing test showed permanent degradation of 
output of 1570 (under A i r  Mass 1, 25°C test) characterized by a reduction in SCC. 
This cell had delaminated at the edges and the measured a rea  of that delamination 
w a s  approx. 15% of the cell area.  

A number of cells, some that had not been thermal cycled 
and some that had been thermal cycled, were carefully potted, cross-sectioned and 
polished and studied under the microscope. 
views of CdS cells have been helpful in the past in the study of the grid contact, and 
of the structure of the CdS film. 
lateral  cracks in the CdS films, and delaminated a reas  between the CdS and the silver 
Pyre-ML conductive substrate coating. 
to be much more prevalent in the cells which had been degraded on thermal cycling 
than they were on fresh cells. 
Figure 10-B. 

Such photomicrographs of cross  -section 

In this instance, the studies disclosed a number of 

These cracks and delaminations appeared 

These cracks and delaminations a re  sketched in 

The cracks appeared to be stress-induced and in some cases 
seemed to have been transmitted to the CdS film by a grid wire, a s  there was some 
evidence of iteration of the crack pattern corresponding to the grid wire spacing. 
In a number of cases the depth of the lateral  cracks appeared to be about 5 microns 
and to correlate with the maximum penetration of the Cu S along grain boundaries. 
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Also, in some cases the cracks appeared to initiate at the substrate at the site of 
a delamination of the CdS from the substrate. 

These lateral cracks and delaminations have been noted 
independently at both Clevite and Lincoln Laboratory, though the extent and probable 
significance of the cracks were recognized f i rs t  at the latter.  

In some cases  it has been possible to s t a r t  a lateral  crack in the 
CdS layer at a corner of the cell and to cause the crack - via peeling forces - to 
propagate across the entire 3" square a rea  of the cell so that the bar r ie r  layer and 
part  of the CdS layer remain intact attached to the grid and cover plastic while the 
bulk of the CdS fi lm remains attached to the substrate. 

Other nonhomogeneities in the CdS cells after thermal cycling 
were disclosed by infrared thermograms which were taken at  the Barnes Engineering 
Company by Lincoln Laboratory personnel. These were taken by running a current 
of 1 ampere in the forward direction through a freely suspended cell and scanning 
the cell with an infrared sensor to measure the pattern of temperature r i s e  caused 
by the current flow. 
shown in reference 9. 

Photographic reproductions of such I-R thermograms w e r e  

F resh  untested cells generally showed a relatively uniform 
temperature within a few degrees across the entire surface of the cell. 
some cells showed hot spots and cold spots indicative of nonhomogeneities in the 
conducting path. 
tact due to missing conductive epoxy cement over a portion of the grid. In other 
cases,  hot spots suggested localized shorting paths through the CdS film. 
ture rises were frequently of the  order of 30°C and in one case a differential of 
135°C w a s  observed. 

However, 

In one case a cold spot could be correlated with a poor grid con- 

Tempera- 

A number of additional infrared thermograms a re  being taken 
nn a g r o ~ p  of cclfs prior to temperature cycling xiqd these wi l l  be compared wi th  
others to be taken after thermal cycling. 

(c) Interpretation of Results 

Widely different performance patterns have been observed for 

Variations in the thermal cycling test  conditions themselves may account 
different CdS thin film solar cells in the various thermal cycling tes ts  described 
above. 
for some of these differences, and interpretation of the data is undoubtedly 
complicated by some inaccuracies in measuring cell outputs. 
little doubt that most of the differences a re  due to variations in cell quality. 
evident that the cells fabricated in the last year a re  not stable on temperature cycling. 

However, there seems 
It is 

The instabilities observed in recent vintage cells have frequently 
been intermittent in nature and cannot generally be characterized by a systematic 
change of cell properties. This makes it unlikely that degradation is due to an 
intrinsic change in the cell - i. e . ,  in the bar r ie r  layer, in the insulating layer, o r  
in the CdS semiconductor. Rather, the degradation appears to be mechanical in 
nature. A number of different observations all lead to this conclusion. 
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There have been many nonhomogeneities observed in cells of 
Major differences in the continuity of the si lver Pyre-ML the present vintage. 

coating a re  readily seen by examining the substrates in front of a strong light. 
differences could cause hot and cold spots in the cells under full electrical  load and 
these in turn could create high localized s t r e s s  concentrations which could lead to 
cracks and delaminations. 
Wide differences in the physical integrity of the CdS f i lm itself ,  of the adhesion of 
the CdS film to the substrate and of the distribution and continuity of the conductive 
gold epoxy cement have been observed on regular production cells.  A l l  of these 
could lead to uneven s t r e s s  distributions and eventual fa i lures .  Until the middle of 
1967 the control of quality of the fabrication process w a s  entirely a mat ter  of 
individual operator attention. Gradually in this period, more detailed specifications 
for component parts,  mater ia ls  and process parameters  and for in-process cell 
quality have evolved and procedures for inspection and quality assurance have been 
instituted. 
ment in cell  stability which has been observed during the last year, but it should be 
realized that this program is still far from adequate. 

Such 

The condition of course could get worse a s  i t  progressed. 

The quality control program is believed responsible f o r  the improve- 

While corroborative data are being sought in experiments planned 
fo r  the next few months, there does appear to be a very  high probability that the 
cracks,  delaminations, f l a w s  and various nonhomogeneities in cell construction 
account for the major portion of cell degradation on thermal  cycling. . 
probable that the forces exerted by the differential thermal  expansion between the 
various material  layers  which comprise the CdS thin film cell act on the flaws and 
discontinuities to cause cracks,  delaminations, etc.  

It seems 

It seems probable that excessive compressive and tensile forces 

The apparent ruggedness of the CdS cell  may have allowed overly 
a r e  being used in processing the cells during the cell gridding and cover plastic 
lamination steps.  
abusive handling and processing practices to  become established. 
may predispose the cells to failure under extreme environmental conditions. 

so.  
alleviate the buildup of s t r e s ses  in the cell package and others  which may help to 
better contain those s t r e s ses  Included among the changes being evaluated are a 
zigzag o r  a wavy grid pattern that could glve" on thermal  contraction, and flexible 
epoxy cements that should not transmit as  much s t r e s s  f rom the grid or cover 
plastic to the CdS layer .  
and using a reinforcing bead along the cut edges may keep s t r e s s  concentrations 
f rom start ing delaminations. 

These factors  
In 

Also, there a r e  some design changes which can be made which may help to 
case, riaEji of these factors 5~ csntr=lle< and steps are beifi.r e taken  ------- tc &I 

Carrying the cover plastic fur ther  up onto the lead tabs 

IV . CELL DESIGN IMPROVEMENTS 

A .  Semiconductor - Substrate Interlayer 

If the CdS is deposited directly on the si lver Pyre-ML substrate, a rectifying 
contact results and cell outputs a r e  very low indeed. 
ohmic contact between the si lver Pyre-ML substrate and the CdS fi lm. 
an excellent low resistance ohmic contact, and the zinc is readily deposited f rom 
conventional electroplating baths. 

Zinc is used to provide an 
Zinc forms 
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The chief disadvantage of zinc has been i t s  relatively high vapor pressure 
at the temperature at which the substrate is maintained during CdS evaporation. 
There is some tendency for  zinc to evaporate off of the substrate prior to the start 
of evaporation and then to re-evaporate from the adjacent tooling la ter  in the 
evaporation cycle when the whole system warms up. While it has been difficult to 
prove the point, it  has been suspected that such zinc re-evaporation has caused 
excess amounts of zinc to be included in the CdS film with a consequent loss in the 
semiconducting properties of the CdS and a lowering of CdS cell output. 

Further,  it has been suspected that la ter  on the zinc may diffuse into the 
CdS, and possibly also into the silver of the si lver Pyre-ML layer, when the cell 
is fabricated and subjected to high temperature storage conditions. Bearing out 
this suspicion it has been noted that some cells show an unusual degree of dis- 
coloration when viewed through the Kapton substrate after 150°C vacuum storage 
fo r  about 4 weeks. 
frequently accompanied by a loss of adhesion of the CdS to the substrate. For 
these reasons a number of alternative materials have been evaluated as possible 
substitutes for the zinc interlayer. 

This discoloration is a mottled sor t  of blackening and is 

1. Chromium 

Evaporated chromium layers were evaluated a ye ago using both an 
ordinary grade of chromium and a special high purity grade’). In both cases  
excellent ohmic contacts resulted, and the I-V characteristic curves of the cells 
fabricated with the chromium w e r e  very rectangular. 
relatively low short circuit currents and low efficiencies - about 25  to 3070 below 
what was obtained from zinc interlayer cells. 

However, the cells gave 

Additional experiments w i t h  chromium interlayers were tr ied in this 
period. 
thus poisoning the subsequently wapora tpd  CdS film, a group of cells were fabricated 

itself. After the chromium was deposited onto the silver Pyre-NIL substrates, they 
were removed from the evaporator, the evaporator w a s  thoroughly cleaned, and then 
the substrates were put back into the evaporator for the CdS fi lm deposition. 

With the thought that Chromium might be contaminating the evaporator and 

.*-.-- ^_-I-^-- - ^ - -  u,Lig n r p e i  ate t z v a p u ~  atTuiib for t h ~  chi-oriiiiim i2zdei- ~ ~ s t i n g  m d  for the CdS f i h  

The chromium interlayer cells still  gave very low outputs - less  than 
half that of control cells wi th  zinc interlayers. 
chromium had I -V curves with double inflection points, a s  i f  there were two  back- 
to-back junctions. 
where excellent rectangular I-V curves were obtained. This may be a result of 
removing the chromium deposits from the evaporator where they could oxidize prior 
to CdS film deposition. 

A l l  of the more recent cells with 

This is in direct contrast to ear l ier  tes ts  of chromium interlayers 

2 .  Alum.inum 
~ 

Aluminum is an attractive possibility a s  an interlayer material  between 
the si lver Pyre-ML substrate and the CdS film as  it also makes an excellent low 
resistance contact to CdS. It is a good electrical conductor and has a low vapor 
pressure.  There is every reason to believe that aluminum would not tend to diffuse 
away into either the CdS layer or into the si lver substrate. The chief drawbacks of 
aluminum a re  i ts  tendency to fo rm an insulating oxide layer and the possibility of a 
highly water soluble sulfide being formed which could result in a moisture sensitive 
cell.  
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The possibility of a water soluble aluminum sulfide layer causing 
difficulty should be minimal if the layer were completely covered with an imperme- 
able CdS layer - which should always be the case. In order to overcome the 
problem of oxide formation, a process was developed whereby the aluminum 
evaporation was gradually phased out as  the subsequent CdS evaporation was phased 
in. 
distinct interface between them. 

Thus, the vacuum was never broken between the two layers and there was no 

Well adhering CdS films were obtained by these techniques, and a few 
reasonably efficiency cells were fabricated from them. 
was 5. 370 efficient. However, most of the aluminum interlayer cells w e r e  between 
4 and 570 efficient, o r  about 20'7'0 less than the standard zinc interlayer cells pro- 
cessed over the same period. Table XX gives the data for the better aluminum 
interlayer cells processed in this period. 

The highest output cell 

It is not clear why the aluminum interlayer cells have not given as much 
output as the zinc interlayer cells. It is possible that the zinc presents a different 
surface for the nucleation of the  CdS which in some way is more favorable for  the 
structure of the CdS film and also for the formation of the Cu S ba r r i e r  layer. 
However, our ability to characterize the structure of the CdS2film is very limited, 
and this remains another poorly understood portion of the technology of CdS solar 
cell fabrication. 

It is of interest that several of the aluminum interlayer cells have given 
the best stability results on the 150°C vacuum storage test. 
be a statistical accident since only a few of these cells have been put on that test. 

However, this may 

B. Copper Substrate 

Some of the highest efficiency CdS thin film solar cells have been formed 
using CdS films that were deposited on copper foil substrates in  place of t h e  Kapton 

chiefly due to the higher conductivity of the 0. 001" thick copper substrate which 
minimized ser ies  resistance effects from the substrate. Though the copper foil 
substrate is probably more economical than the plastic substrate, the difference 
is not great and there would be little advantage to the copper substrate unless it 
did yield higher conversion efficiencies than could be obtained from the plastic 
substrate cell. 

plastic substrates. T h e  reason fsr  t he  h i g h e r  efficiencies appears t G  havz beer: 

On that possibility the copper substrate cells were extensively evaluated 
However, considerable difficulty with good CdS film adhesion to in this period. 

the substrate was encountered, a n d  most of the effort  was placed on trying to improve 
the adhesion. These results were only partially successful and because of better 
results being obtained from the silver Pyre-ML coated plastic substrate cell, the 
work with the copper substrate cell was finally discontinued. 

C .  Evaporated Grid Contact 

Earlier(") a technique was developed of depositing a gold grid on the bar r ie r  
layer by vacuum evaporation using a mask of a fluorocarbon release agent. 
fluorocarbon w a s  sprayed onto the cell bar r ie r  from an aerosol can with a standard 
etched (or  electroformed) grid placed in front of the bar r ie r  as  a mask. 
ing were done gently the fluorocarbon would not work under the grid nor lift it  off, 
and a clean pattern resulted. 

The 

If the spray- 
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TABLE XX 

PERFORMANCE DATA OF ALUMINUM INTERLAYER C E L L S  

C e l l  No.  

A977A 

A977B 

A977D 

A981C 

A981D 

A995C 

A997A 

A997B 

A997D 

ocv 
0.465 

.464  

.452 

.471 

.470 

.472 

.480 

.483  

.482 

SCC 

0 .735  

.695  

.734  

.820 

.800 

.724  

.772 

.800 

-800  

__c 
VmP 

.370 

.366 

,344  

. 363 

.350 

.369 

.364  

.390 

.386 

- Imp 

.605  

.600 

- 5 7 7  

.690 

.690  

.640  

.690  

.685  

.670  

M.  P. 

.224  

.219 

.197  

.251  

.242 

.236 

.251  

.267 

.259  

F i l l  Eff. 

64 

68 

59 

64 

65 

67 

68 

70 

67 

4 .0  

4 . 0  

3.6 

4 .5  

4 .5  

4 . 2  

4 . 6  

4 .9  

4 . 7  

A l l  C e l l s  w i t h  Myla r  Cover P l a s t i c  

T e s t e d  at 25°C in Simulated AM1 Sunlight 
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When this barr iered cell was  placed in the vacuum chamber and metallic 
gold was deposited by thermal evaporation, the gold would not adhere to the area 
where there was fluorocarbon, but would to those a reas  where there wasn't.  It was 
necessary to find the right parameters f o r  the gold deposition - but this was not too 
difficult. 
overheating the substrate, and the gold evaporation rate had to be kept low or  the 
gold would stick to the fluorocarbon coated a reas .  After evaporation of the gold 
grid the fluorocarbon was readily removed in a solvent rinse without damage to the 
gold grid o r  to the cell barr ier .  

(The source to substrate distance had to be large enough to keep from 

The difficulty with these evaporated gold grids was that they were too thin 

If the 
to c a r r y  the high currents generated by the high efficiency CdS solar cell, and a 
very high ser ies  resistance resulted which kept cell efficiencies very low. 
thickness of the gold were increased much beyond about a micron, poor adherence 
of the gold grid was experienced. 

However, the evaporated gold contact to the CuzS ba r r i e r  could be very 
advantageous because of the very intimate low resistance ohmic contact which it 
makes and because it is very adherent. 
advantages of the evaporated grid with the current carrying capacity of the metal 
mesh grid, both types were employed at the same time. 
onto standard 3" x 3" cell barr iers  to a thickness of about a micron. Then a 
standard gold plated copper metal mesh was attached with the standard gold filled 
epoxy cement over the evaporated grid. An attempt w a s  made to register the 
cemented grid over the evaporated grid, but this w a s  only partially successful. It 
is estimated that the combination grids resulted in an addition of about 10% of the 
active cell area being lost due to the opaqueness of the extra evaporated gold grid. 

In an effort to combine the potential 

Gold grids were evaporated 

Table XXI summarizes the output of 4 cells that were made in this fashion. 
The outputs were slightly low, mostly probably because of the loss  of active area.  
However, good OCVIs and f i l l  factors were obtained. These cells were sent to 
NASA for evaluation on temperature cycling test, since one of  The S ~ I S ~ P C ~ P ~  weak- 
nesses  of the present design cell was the permanency of the cemented grid contact. 
Initial indications from NASA a re  that these cells a r e  holding up well, but not very 
many cycles have been accumulated a s  of this writing. 

TABLE XXI 

PERFORMANCE OF CELLS WITH EVAPORATED GOLD GRIDS 
AND OVERLAID STANDARD CEMENTED METAL MESH GRIDS 

Imp M.  P. F ill Eff Cell No. ocv SCC 

N108A2 ~ 480 742 ~ 389 ~ 650 . 2 5 3  7 1  4. 6 
N108A5 ~ 474 ~ 778 ~ 369 I 685 ~ 252 68 4. 6 
N108C6 . 4 9 0  .720  ~ 390 605 235 6 7  4. 3 
N108C8 ~ 480 6 6 1  380 ~ 580 ~ 220 69 4 . 0  

VmP - 

A l l  cells with Mylar cover plastic. 
Tested at 25°C in Simulated AM1 Sunlight. 
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D. Alternate Grid Designs 

A number of alternate types and designs of grids have been tried in this 
period in hopes of achieving a more economical gridding method, o r  of achieving 
a more stable cell on thermal cycling. 
and additional data a re  needed. 

Most of these experiments were inconclusive 

A small  quantity of 40 line pe r  inch and 30 line per inch metal mesh grids of 
the same type presently being used with a 60 line per inch spacing were obtained 
from the vendor and tried on cells. The coarser  spacing grids if successful could 
be manufactured by much more economical methods than the photo-etching process 
presently being used. While there were not sufficient cells run in this period for a 
conclusive answer to be obtained, it did appear that lower outputs were the result 
of the coarser  grid spacing, and it was the ser ies  resistance of the cells that w a s  
affected . 

A few cells were processed with electroformed solid gold grids in place of 
the usual gold plated etched copper grids. 
that some factor such as  the hardness of the copper grid o r  the presence of impurities 
in the standard grid might be degrading cell output. A few of these cells gave 
appreciably higher outputs initially than the standard gridded cells. This w a s  
subsequently attributed to a combination of higher light transmission through the 
electroformed grid and a calibration e r r o r  in the test equipment. These cells did 
not give a s  good a result on thermal cycling as  the standard gridded cells, though 
only a f e w  were tested. 

This w a s  done to cover the possibility 

A f ew cells were fabricated with a special grid design that w a s  chosen so 
that any stresses on the grid would be alleviated by a slight distortion of grid 
geometry. 
results of this experiment were inconclusive. 

This also was for the purposes of stability on thermal cycling. The 

In aiiotiier exper.irnent, the standard goid piaied copper gr ids  were annealed 
to a dead soft temper and used in cells. Again the idea was to prevent s t r e s s  con- 
centrations being transmitted via the grid wires.  
cycled; however, a few were put on the 150°C vacuum test and these were no better 
than the standard cells on this test. 

None of these cells w a s  temperature 

In another experiment, tnLcKer grids were obtamed and evaluated. These 
were 1 mil thick in place of the usual 0.  45 mil thick grids. The idea w a s  that the 
thicker grids might be more economical and that they would have greater current 
carrying capability. The thicker grids can be used, but there a r e  some problems 
such as an extra amount of epoxy cement required for  cover plastic attachment to 
fi l l  in the larger  space between the cell and the cover plastic. 
on these before it can be determined if there is any advantage to using a thicker grid. 

More work is needed 

Further work with alternate g r i d  designs is still desirable but it seems 
increasingly evident that this is a matter of economics rather than of cell stability. 

E .  Alternate Cover Plastics 

One of the difficulties with the present method of cover plastic attachment 
is that the pressure used to laminate the plastic to the cell may cause the epoxy 
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cement to work in under the grid wire and force it away from the bar r ie r ,  thus 
causing partial loss of the grid contact. 
plastic by casting it in place. 
and hence would be amenable to this method of application. 

One way to avoid this is to apply the cover 
Mylar and Kapton are  understood to be cast films 

In order  to determine if this approach might be practical, the use of clear 
epoxy was tried a s  a cover plastic. A low temperature curing epoxy w a s  used. 
was applied by spreading it across the surface of a cell with a cemented grid in 
place and then letting the epoxy cure in a low temperature vacuum oven with no 
pressure applied. 
result  of this method of cover plastic application. 
curing of the spread-on epoxy a s  they had given pr ior  to i ts  application. 

It 

No significant change in the outputs of the cells w a s  noted a s  a 
Cells gave the same output after 

Six cells w e r e  packaged in an experimental cover plastic which w a s  
represented by the manufacturer as having the high temperature properties of the 
standard polyimide film and some resistance to radiation (cobalt 60) but without 
the amber color of Kapton. These cells gave reasonable conversion efficiencies, 
with a maximum of 5.0% being obtained. These cells a r e  undergoing various tests, 
and some of the plastic fi lms a r e  being tested at NASA, Lewis Research Center for  
their resistance to particle radiation and to UV. 

Earl ier  in the Contract, an attempt was made to use Pyre-ML as an 0. 2 mil  
The Pyre-ML overspray thick overspray onto the surface of Mylar packaged cells. 

w a s  dried to a tack-free condition, but was not cured. 
condition the dried Pyre-ML would sti l l  be water white in color and hence not reduce 
the transmission of light to the cell, yet would act as a protective layer as far as UV 
and particle radiation were concerned. The tests for  these latter factors were never 
completed however. 
expected to cure gradually in space and eventually take on the properties of Kapton, 
including Kapton' s amber color. 

The thought w a s  that in this 

The supplier of the Pyre-ML varnish advised that it would be 

V .  FABRICATION PROCESS IMPROVEMENT 

A .  Substrate Preparation Process 

Several alternate methods have been considered and evaluated fo r  providing 
the conductive layer on the Kapton substrate. This conductive layer i s  the negative 
current collecting electrode of the cell. 
aluminum foil laminated to the Kapton with epoxy cement, a commercially available 
copper clad Kapton film, commercial vacuum evaporated coatings on Kapton, and 
electrolessly plated Kapton films. 
electrical resistance to  be satisfactory CdS cell substrates - coatings of 0. 25 ohms 
per square were the best that could be obtained. The commercial copper clad 
Kapton could not be obtained \x ithout a hLgh mctdence of pinholes in the copper. The 
laminated aluminum foil and electroless deposited copper and silver f i lms produced 
cells with substantially lower cell outputs than the standard silver Pyre-NIL process. 

Among the alternate methods are:  an 

The evaporated coatings w e r e  all too high in 

It is  possible that more work with some of these alternate methods, and 

There- 
particularly the latter two, would produce satisfactory results. However, when the 
si lver Pyre-NIL coating i s  properly done. it makes a very good substrate. 
fore ,  the bulk of the effort has gone into improving the standard process.  
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A mixture of 1 part silver flake pigment to 2 par ts  Pyre-ML binder, solids 
by weight, has been standard f o r  some time fo r  this application. 
only about 10% silver by volume in the finished coating, and since this coating 
requires burnishing prior to zinc plating, attempts have been made to increase the 
pigment-to-binder ratio. In every case, substantially poorer adhesion of the con- 
ductive layer to the Kapton resulted when the pigment-to-binder ratio was increased 
to about 2:3 o r  more.  There appears to be an incompatibility problem when more 
silver i s  added to the Pyre-ML varnish. This has been verified by the manufacturer 
of the Pyre-ML, though we do not understand why this should be so. 

Since this represents 
I 

The standard 1:2 pigment-to-binder ratio has produced conductive substrates 
with sheet resistances on the order of 0 .01  ohms per  square for thicknesses of 0 . 2 5  
to 0. 30 mils. 
conversion efficiencies (AM1 @ 25°C) between 4 and 6%. It w a s  noted that the higher 
efficiency cells w e r e  those with higher short  circuit currents of about 1 . 0  to 1. 1 
amperes. However, these higher output cells also had lower fill factors of about 65 
to 6770, whereas the lower output cells had fill factors up to 7070. 
that it w a s  se r ies  resistance that was limiting the output of the better cells and that 
this was due to the conductive substrate layer. 

This was adequate to produce 3" x 3" size  Mylar covered cells with 

It w a s  then realized 

In an attempt to improve the conductivity of the  substrate, therefore, experi- 
ments w e r e  run with thicker silver Pyre-NIL layers .  
f rom 0. 25  to 1 .0  mils, in steps, the sheet resistance as measured with a 4 point 
probe did indeed decrease, but fa r  short of the expected amount. Even more su r -  
prising, however, w a s  the fact that the conversion efficiencies of cells made from 
these thicker, more conductive substrate layers  decreased rather than increased. 

A s  the thickness w a s  increased 

It appears that there was an increased tendency fo r  the si lver flake pigment 
to segregate to the bottom of the  Pyre-ML binder as the binder cured, leaving 
relatively few silver flakes "floating" on the surface. 
t h i c k n e s s  must have made  worse the nonhomogeneities which were already at an 
intolerable level. 
the standard process to yield a more homogeneous silver Pyre-NIL coating. 

The increased binder layer 

Therefore, s i i h s ~ q i i ~ n i  effort  in This area w a s  placed 011  i rnp rwv  in! 

Photomicrographs of cross-sectioned standard silver Pyre-ML coatings 
disclosed some laminar concentrations of silver flakes and other regions that 
appeared to be devoid of silver particles. 
by differences in the optical density 01 the Coated substrate (wnen placeci over a 
strong light in a darkened room). 

The differences were delineated markedly 

Much of the unevenness in distribution of the silver pigment appeared to be 
due to uneven application of the thinned silver Pyre-ML mixture in the first place. 
More attention w a s  placed on the paint spray equipment used to apply the mixture, 
on the evenness of the spray pattern, and on obtaining a uniform motion of the spray 
pattern across the substrate surface. In the last  month this approach has appeared 
to be succcssful in eliminating t h e  gross nonhomgeneities that were obtained ear l ier .  
The average sheet resistance of the conductive coating has been decreased to about 
0 .  006 ohms per square for  the same thickness and composition. 
with more rigorous visual inspection of the substrates, has resulted in greater 
uniformity and higher cell outputs and fill factors. 
process can probably be achieved and more work in the a rea  is  planned. 

This, in combination 

Further improvements in this 
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B.  CdS Film EvaDoration 

When additional fabrication facilities were added early in this period, major 
difficulties were encountered with the new larger  vacuum evaporation equipment. 
The greater number of films evaporated at one time required some changes in the 
tooling. 
chamber in place of the earlier glass chamber caused a different temperature dis- 
tribution pattern of the system. In addition to the usual problems of control of the 
evaporation parameters there w a s  a problem of uniformity over the larger  a rea  being 
processed. The I-V characteristics of the cells finished from the fi lms processed 
in the larger  evaporator were markedly different, with slightly higher open circuit 
voltages and slightly lower short circuit currents than had been obtained with the 
smaller evaporator. 
limited, and in any case there were more pressing problems. 

The larger system generated considerably more heat and the metal vacuum 

O u r  ability to characterize the CdS films has always been very 

The main problem with CdS films has been pinholes in the films, and in 
essence this problem has been with u s  from the very beginning of the CdS thin film 
solar cell project. 
short  circuit of a finished cell if the conductive epoxy works into the pinholes, or if 
the Cu S layer forms  down the sides of the pinhole to make direct contact with the 
conducqive substrate layer.  In the latter instance the short cirucit path may have 
enough resistance so that the cell output is only partially affected. 
on the substrate shows through a pinhole and is  contacted by the CuCl bar r ie r  forming 
solution, elemental copper is precipitated from the solution which has a severely 
detrimental effect on the Cu2S layer. 

For some reason, the new large evaporator caused a great deal of difficulty 
with pinholes, and it was many months before this factor was brought under a reason- 
able degree of control. 
contamination on the surface of the substrate, and hence the uniformity of the silver 
Pyre-ML layer and the evenness and cleanliness of the zinc plating on the silver 
Pyr2 -&lL layer a re  very iiripor-tarit. Even more imporrant,  h o w e v e r ?  is the cc?_n_trc?l 
of spattering of solid powder particles of CdS from the sources to the substrate. 
This spattering results, of course, from the too rapid t ransfer  of heat to the CdS 
charge. Since CdS does not go through a melting stage in this process, the edge of 
the charge can overheat causing i ts  decomposition with such violence that some 
particles are blown out of the source. These can and do travel to the substrate in 
dulllt: C.ASCS arlCi st ick xnere. 
later leaving a pinhole. Even if they do not become dislodged in subsequent pro- 
cessing, they a re  not properly incorporated into the structure of the growing CdS 
film and do cause a nonhomogeneity o r  flaw which can be the site of a later instability. 

Pinholes cause difficulty a s  they can be the site for  a direct 

Also, i f  the zinc 

Pinholes may be caused by a nonhomogeneity or spot of 

Iiowever, these solid particles may become dislodged 

There have been a number of special evaporation sources designed to cope 
with the problem of spattering of non-melting materials. However, those that have 
been tried here have all had the disadvantage of holding too limited a size charge, o r  
having too s l o w  an evaporation rate, o r  they were of such design that adequate con- 
trol of evaporation rate was not practical. 
reached in this laboratory by using a plug of quartz wool in the neck of each 
evaporation source, reducing slightly the ra te  of CdS evaporation, and depending on 
a detailed 100% visual inspection under the microscope to reject from further pro- 
cessing those films containing pinholes. 

A partial solution to the problem has been 
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C .  Grid Contact 

The process for  establishing contact between the metal mesh grid and the 
ba r r i e r  layer using conductive gold epoxy cement was developed because of the 
ear l ier  experience with intermittent grid contacts when the cover plastic held the 
grid in place. When clear epoxy cement was substituted fo r  the Capran adhesLve 
for  cover plastic attachment, that problem may have become less  critical. How- 
ever, in view of the requirement fo r  long te rm stability under the rigorous conditions 
of space, it was believed safer  to provide a permanent positive contact. Thus the 
gold epoxy cement process was  adopted. 

However, the technology for establishing such a positive and permanent 
contact had to be acquired by experience. 
have frequently disclosed substantial a r eas  where there was no gold epoxy cement 
under grid wires. There have appeared to be two ways in which this condition can 
happen. One is that the grid is not completely coated with gold epoxy cement in the 
f i r s t  place. Control of this factor has been greatly improved by better training and 
supervision of the operators applying the epoxy cement to the grids, and by estab- 
lishing a l00Y0 inspection of the coated grids before they a r e  used in the cells. 

Photomicrographs of cell cross-sections 

In order to facilitate the 100Y0 inspection step, a small  amount of fluorescent 
dye has been tried in the gold epoxy cement with the grids being inspected in a dark 
room under ultraviolet light. This does appear to ensure better control of the grid 
coating process. Preliminary indications a re  that the cell output i s  not affected by 
the dye. 
into the process however. 

A more extended t r ia l  of this dye will be carried out before i t  is standardized 

The second way that the cement can be missing from part  of the grid is for 
the grid to be put down on the cell and then shifted to another position so that some 
of the cement is left behind. Cleanliness of the grid itself helps in this respect. 
More important is the skill of the operators who assemble the cells in positioning 
ihe .grid on the cell so that 11 is correctly piaced the Iirst  t ime and does not n e e d  
to Le  shifted. 
cement which dries tack-free and hence would not track if shifted on the cell prior 
to curing of the epoxy. So far, however, a suitable epoxy with this tack-free drying 
capability has not been located. 

Better jigging may help here. Another possibility is to use an epoxy 

AG ci;eii i i iG i -e  L i i y w r  i a ~ i  Taciur governmg the reiiabiiity 01 the gold epoxy 
grid contact is the proper curing of the epoxy. 
procedures a re  necessary to ensure satisfactory results. Some of these procedures 
were learned the hard way. 
Precautions a re  necessary that the epoxy is not held too long prior to use, and even 
that the manufacturer does not s h i p  a batch with very little of i t s  normal shelf life 
left .  
shelf aging. Second, the epoxies should be well mixed prior to use, otherwise the 
activator may segregate and incomplete curing will result. Third, precautions 
must be taken to prevent moisture pickup by the epoxy and this can be more of a 
danger if the epoxies a re  stored in a refrigerator.  Fourth, the epoxies must be 
fully cured to have their full mechanical and electrical properties and be relatively 
f r ee  of subsequent changes. In this period, controls covering all of these points 
were se t  up. A s  a result there has been a gratifying improvement in the relLabLlity 
of the gold epoxy grid contact. 

A s  with all epoxy cements, certain 

Most important is that the epoxy cement be fresh.  

Storage of epoxies at lower than room temperatures does help to minimize 
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D. Lamination Process 

1.  The Epoxy Cement 

The experiences and comments on the gold epoxy cement a s  discussed 
above also apply to the clear epoxy cement used to attach the cover plastic. Durmg 
the f i r s t  half of this Contract period a poor experience with shelf stability w a s  traced 
to a lot of epoxy cement which w a s  over aged before being shipped by the vendor. It 
is not understood how the incomplete curing of the clear  epoxy cement used to attach 
the cover plastic can affect the output of the CdS thin film solar cell, but there is  very 
little doubt but that it does. Several epoxies have been evaluated fo r  the cover plastic 
attachment, including a flexible epoxy but quite satisfactory results have been obtained 
with the present B-staging epoxy when it is properly used. 

2 .  The Cell Cracking Problem 

From the early days of the present plastic substrate CdS thin film cell 
design it has been noticed that there were numerous but nearly imperceptible cracks 
in the CdS layer. These cracks could be seen f rom the backs of the cells by looking 
at the cell with a glancing light reflecting from the cell at about 45". 
look something like check cracks in dried mud. From the f i r s t ,  however, these 
cracks seemed to have no effect on the output of the cells, and hence very little 
attention w a s  paid to them. 

The cracks 

More recently it was  suspected that these cracks might be affecting cell 
stability, hence they were examined in more detail. 
occurred in the cell gridding and lamination steps. 
that they occurred during the heat-up portion of the gridding and lamination cycles. 
It had been the practice to place the laid-up cells between Teflon plastic sheets on 
an aluminum die, cover them with an aluminum foil diaphragm, evacuate the a i r  
from the underside of the diaphragm, apply 100 psi static pressure to the upperside 
nf the d i iph ragn ,  hea t  the die TO the desired lerriperaiure. iioid lor a sei  period, 
cool and then release the pressures and remove the cells. 

It was found that the cracks 
Further investigation disclosed 

It soon became evident that what was happening was that the 100 psi 
p ressure  clamped the cells between the aluminum foil diaphragm and the aluminum 
die, and that when the whole was heated to the 196°C gridding and/or laminating 
temperature the greater thermai expansion of tne aiuminum p u i k d  Lhe CdS iiliii 
beyond its elastic limit and fractured the fi lm. The cracks apparently caused no 
rea l  difficulty as  they would close when the cells cooled down again and the epoxy 
cement would tend to seal  them. 
the film to the substrate, hence the relatively wide crack spacing would have little 
effect here.  

Electrical conduction in the CdS is mostly through 

The cracks do give the ce l l s  a poor appearance and it is probable that 
they do hurt the electrical ccnhction of the CdS layer even if only slightly. 
possible that they could hurt the long term stability of the cell, though it is also 
possible that they could help it, since it is in effect a type of s t ress  relieving. 

It is also 

It was found that if the 100 psi laminating pressure was not applied until 
after the cells reached the 196°C temperature, the cracks did not occur. 
instead there was an increased incidence of wrinkles in the cells and in particular in 
the cover plastic and in the Teflon separating sheets (which would leave an impression 
in the cell). Also lower outputs of the cells were obtained due to s tar t  of cure of the 
epoxy before applying pressure.  
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A better method of alleviating these cracks was the substltutlon of a 
molybdenum o r  tantalum surface plate on the lamination die. 
coefficients of these metals more nearly match that of the CdS. 
alleviating the condition, this technique did not entirely cure it and some of these 
cracks a re  still  obtained. It seems probable that the aluminum foil diaphragm at 
times w i l l  control the expansion and contraction of the cells rather than the base 
plate. 
diaphragm, and there a re  other reasons that make this desirable. 

The thermal expansion 
However, while 

The answer to this is probably the use of a lower pressure on the aluminum 

3. Lower Lamination Pressure 

In addition to contributing to the vertical cracks in the CdS layer, the high 
lamination pressure presses  the grid into the CdS layer so f i rmly that the impression 
of the grid can clearly be discerned in the substrate plastic film when viewed from 
the back of the cell. 
cycling disclosed lateral  cracks in the CdS layer that appeared to result from s t r e s s  
concentrations which could have been transmitted via the grid itself. It i s  entirely 
possible that this occurs during the gridding or  laminating steps and that this i s  then 
aggravated by the severe thermal conditions on the thermal cycling test .  

Photomicrographs of cells which had degraded on thermal 

Therefore, preliminary experiments were carried out to determine the 
practicality of gridding and laminating the cells with reduced pressure.  Absolute 
pressures  of 4, 15 and 25  psi in place of the standard 100 psi  gage pressure were 
tr ied f o r  both the gridding and lamination steps. There w a s  some increased tendency 
fo r  voids in the epoxy cover plastic adhesive to occur and for wrinkles in the package. 
Hcwever, with some special caution in laying up the package and placing it in the die, 
the use of thinner aluminum foil diaphragms, and the use of slightly thicker epoxy 
cement layers, successful laminations were carr ied out at pressures  of 15 to 25  psi. 
These cells had much l e s s  tendency to form vertical cracks in the CdS, and left 
hardly any impression of the grid in the CdS layer o r  in the substrate plastic. 
Several of these cells were forwarded to Lewis Research Center, NASA, for  evaluation 
and thermal cycling teat. Further w o r k  along these lines is planned. 

E .  Cell Testing 

1. I-V Characteristic Test Equipment 

11ie sula~.  S i I I l U k L U K '  w a s  rebuiit in the iatter months of tne period to g v e  
Sylvania 

m, 

a system more in line with that being used at the Lewis Research Center. 
Sun Gun" lamps were substituted for  the other tungsten filament lamps previously 

used, a new CuS04 solution water filter was installed with external means of cooling 
the solution, and a new vacuum hold-down fixture w a s  designed and built. 
changes, after elimination of the usual "bugs", have led to a much more dependable 
simulator, capable of handling a greater quantity of cells without overheating o r  loss 
of accuracy. 

I 1  

These 

At the same time a new commercial electronic load was obtained and a 
better quality X-Y recorder,  From the 
experience of the f i r s t  two months it appears that this new equipment setup is likely 
to be very much better with respect to the maintenance problems which have plagued 
us  in the past. 

These permit much more rapid operation. 
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2 ,  Calibration 

Calibration of light intensity of the solar simulator has on occasion been 
In two instances during the year the calibration of the test  equipment a problem. 

was erroneous, and both times high values of cell output were obtained. 
second instance the e r r o r  w a s  nearly 87'0 high and it was more than 2 months before 
the e r r o r  was found and corrected, (The efficiency figures quoted in this report 
have been corrected for these e r rors  in so f a r  as  it has been possible to do so.)  The 
e r r o r  in this case w a s  caused by the precision resis tor  that w a s  wired across  the 
standard airplane flown CdS cell increasing in resistance for some unknown reason. 
Steps have now been taken to have several  secondary standard cells available and to 
cross-check these regularly to prevent a recurrence of this difficulty, 

In the 

Except for the abovermentioned difficulties, the accuracy of measurement 
for  the standard 3" x 3" CdS thin film solar cells has been reasonable, but has  not as 
yet been precisely determined. On two separate "round robin'' measurements of a 
group of 20 cells with the NAS4 Lewis Chemistry and Energy Converbion Division 
facility and the Lewis Lab Power Systems Division facility, the Clevite measurements 
checked the Lewis Laboratory measurements very closely. In addition, a group of 
25  high efficiency cells checked on two occasions a month apart  gave almost exactly 
the same outputs. A further check on the accuracy of the output measurements is 
obtained from the periodic measurement8 of cells on dry shelf storage, On the basis 
of all these measurements, it is believed that the relative accuracy for measurement 
of the Air Mass  1 copvergion efficiency of standard 3" x 3" cells is within 270 - that 
is, a 5.070 cell  if tested repeatedly at different t imes by different operators using 
the Clevite facility wi l l  give an indicated output of no more than 5.170 and no l e s s  
than 4.9%. 

3. Spectral Response Measurements 

The indicated spectral  response of CdS solar cells is very much a function 
of the conditions under which t h e  measurements  are Taken, 
response measurements that have been taken to date of CdS cells, and which have 
been reported in the l i terature o r  in various government contract reports,  have been 
taken with conventional low light level monochromators. 

Practically a l l  spectral  

Since there is a strong photoconductive component to the internal s e r i e s  
resistance or the CdS cell, the magnitude 01 the current generated by any particular 
exciting light is very much a function of the total internal se r ies  resistance, including 
that portion of the resistance that is light sensitive. At low light levels, the internal 
s e r i e s  resistance can be very high. However, because of this photoconductive com- 
ponent, at higher and higher light levels, the ser ies  resistance is reduced greatly 
and gradually approaches an asymptotic value. The photoconductive component of 
the se r i e s  resistance is believed to be due to copper impurity centers situated in the 
insulating region of the CdS and is responsive only to certain wavelengths of light. 

In white light of sunlight intensity there would be enough of these wave- 
lengths to completely excite these copper centers.  Hence the internal se r ies  r e s i s -  
tance would be nearly as low as it could be. Since the CdS cell would nearly always 
be used at sunlight intensity, this is the condition where the relative response of the 
cell to different wavelengths would be most meaningful. 
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A special monochromator has been designed and is now in the process of 
construction in ou r  laboratory which w i l l  test  the cells fo r  relative spectral response 
at the high light levels of normal operation. 

In  the meantime, Figure 11 gives the spectral response of a recent vintage 
cell taken under the low illumination levels that have been used previously. 
response under both monochromatic and monochromatic plus white light bias condi- 
tions a re  presented. 
except that the cut-off at the short wavelength end is  due to the Kapton cover plastic. 

The 

These curves are  very similar to earlier measurements, 
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QTJA L r r Y  ASSCJRANCE PROGRAM . 

I. F A  I3RICA TION PROCESS 

The C'dS thin film fabrication process is basically a six-step process: 

1. 

2. 

3 .  

4. 

5. 

,, e. 

Substrate Preparation 
A .  Spraying 
B. Burnishing 
C.  Zinc Electroplating 

CdS Evaporation 
A.  Sintering 
B. Crushing 
C.  Film Growth 

Barr ie r  Formation 
A. CuCl Purification 
B. Bar r ie r  Formation 

Grid Attachment 
A .  
B. 
C. 
D. 

Cover 
A. 
B.  

Plating of Grids 
Conductive Epoxy Application 
Lamination 
Bake -out 

Plastic Attachment 
Lamination 
Bake -out 

- 
E inai Cel l  Preparation 

A.. Cleanup 
B. Negative Tab Plating 
C .  Trimming 

11. FABRICATION PROCESS INSPECTION 

1 .  Inspection Procedures -- - 
Inspection steps a re  to be performed after each process step. These 

inspections w i l l  be performed in the main by a quality assurance inspector. He  wi l l  
be charged with the task of screening the cell for further processing. 
steps m i i l  be performed by the Pilot Line operators as the cell proceeds through the 
v s r ~ o u s  stages of the process.  The f u l l  fabrication process inspection procedure is 
given below" 

Other inspection 

A ,  Substrate Inspection 

(1) Spraying 

Substrates a r e  to be gLven a visual inspection and rejected for  rough o r  
uneven texture, the presence of foreign particles in the conductive layer, discoloration 
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of the back of the substrate a s  seen from the Kapton side of the substrate. With 
the aid of the light box the substrates a r e  to be further inspected and rejected for  
the presence of pinholes o r  scratches in the plastic or  conductive layer, excessive 
and/or nonuniform light transmission as compared with our standard comparison 
sample. 

(2) Burnishing 

Substrates to be rejected for resistance readings over 0.02 (L as per 
testing procedure A, nonuniform light transmission when compared with the standard 
comparison sample over the light box, and/or Ag Pyre-ML thicknesses under 0.002" 
o r  over 0.003" a s  tested per testing procedure B. 

(3) Zinc Electroplating 

Substrates to be rejected for the presence of fingerprints, pinholes 
o r  scratches through the zinc, water marks,  stains o r  discolorations, adherent dust, 
and/or  an irregular surface resulting from the zinc electroplate. 

NOTE: Visual inspection steps wil l  be made by comparing the 
substrate in question with standard visual comparison 

B 

rejected. 

be rejected. 

samples. 

CdS Evaporation Inspection 

(1) CdS Sintering 

Sintered boules containing foreign inclusions o r  discoloration w i l l  be 

(2)  CdS Crushing 

CdS powder that does not pass through a no. 42 mesh screen is to 

(3) CdS Fi lm Growth 

Fiims are zo be rejecieii w i i e i i  i k  se~isiiir'rty ssiiiple (per teatii~g 
procedure C) is lower than 1 h - c m  and higher than l 0 O a  -cm, for pinholes, signs 
of nonadhering CdS, CdS particle splatter, irregular film growth, and the presence 
of foreign particles on the surface of the film. 

C .  Barr ier  Formation InsDection 

(1) CuCl Purfication 

The presence of any  brown, green o r  blue color in a batch of 
purified CuCl w i l l  be cause for rejection. 

( 2 )  Barr ier  Formation 

Reject any barriered film having any peeled or chipped area  in the 
active a rea  of the cell, pinholes, any signs of copper precipitate in the active a rea  
of the cell, films less  than 0.0008" thick as  measured per testing procedure D, 
and/or  films with an OCV voltage probe reading of less  that 0. 2 volts a s  measured 
per testing procedure E .  
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D. Grid Attachment InsDection 

(1) A u  Plating of Cu Grids 

Reject all  grids that a re  not completely covered by gold, any showing 
discoloration ~ 

(2)  Application of the conductive epoxy to the grids 

Reject any grid which has any a reas  showing where there  is no gold 
conductive epoxy o r  any a rea  where the gold epoxy coating is lumpy due to too much 
gold epoxy. 

(3) Grid Lamination 

Reject any gridded cell having any areas of loose nonadhering grids, 
torn o r  ripped grid wires, torn cell tabs, 
epoxy smeared on the cell surface. 

grid misalignment, and/or  any gold 

(4) Grid Bake-out 

Reject any gridded cells having poorly adhering grids, torn o r  
ripped wires ,  and/or torn cell tabs. 

E. Cover Plastic Attachment Inspection 

(1) Cover Plastic Lamination 

Reject all cells having any t ea r s  in the plastic or the tabs, voids, 
delamination, cover plastic misalignment, cover plastic tearing, and/or  cell 
ciirl of more than 114". 

(2) Cover Plastic Bake-out 

Reject cells having any t ea r s  in the plastic or  the tab, voids, 
delaminations, cover plastic tearing, and/or  cell e -u r l  of more  than 1/4".  

F ,  Final Cell Preparation Inspection 

(1) Cell Cleanup 

Reject cells showing any signs of delamination, tearing of cell  or 
tabs, excessive epoxy on the tabs o r  plastic, and/or  improper cell  dimensions 
on either tab edge. 

( 2 )  Negative Tab Plating 

Reject any cell having discolored tabs and/or  tabs having any non- 
plated areas. 

(3) Cell Trimming 

Reject cells having improper dimensions. 
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A final visual cell inspection w i l l  be made before the cell electrical tes ts  
and cells w i l l  be rejected i f  any of the following a r e  present: 

1. Peeling cover plastic 
2 .  Torn positive or negative tab 
3.  Improperly applied grids (wrinkled, torn, misaligned, etc. ) 
4. Chipped or  peeled CdS film 
5. Excessive curl  where the curl  height exceeds 114" 
6. Voids 
7. Included foreign bodies, dents, wrinkles, swatches,  etc, 
8. Improper cell dimensions 

A final electrical cell inspection wi l l  be made and calls wi l l  be rejected % 
any of the following a r e  present under the Gtandard test condition8 of 100 mw/crn 
at 25OC: 

r 1. Mylar covered cells showing less than 4.1% convereion 
efficiency. 

2. Kapton covered cells showing leas than 3,SB copversion 
efficiency. 

111. INSPECTION RESPONSIBILITIES 

1. Quality Assurance Inspector 

A. Basic Component Chemicals and Parts 

All incoming materials to be inspected and tested to insure they 
meet all cell component specifications, (See IIW for specific specifications, ) 

B. Sprayed Layer 

(1) Texture 
(2) Discoloration (back and front) 
(3)  Foreign particle inclusions 
(4) Pinholes o r  scratches 
( 5 )  Uneven light transmission 
(6) Blistering 

C .  Burnished Laver 

(1) Texture 
(2)  Discoloration (back and front) 
( 3 )  Foreign particle inclusions 
(4) Pinholes o r  scratches 
(5)  Uneven light transmission 
(6) Blistering 

D. Zinc Layer 

(1) Fingerprints 
( 2 )  Pinholes or  scratches thru zinc 
( 3 )  H 2 0  marks 
(4 )  Stains or discolorations (back and front) 
(5) Foreign particle inclusions 
(6)  Uneven zinc plating 
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E.  C d S F i l m  

(1) Excessive pinholes 
( 2 )  Film adherence 
(3) Particle splatter 
(4) Nonuniform film growth 
(5) Excessive foreign particles 

F .  Barriered Film 

(1) Film Adherence (peeling or chipping) 
(2) E x e s s i v e  pinholes 
(3 )  Copper precipitation 
(4) OCV probe measurement 

G, Gold Plated Grids 

(1) Uncovered areas 
(2) Discoloration 
(3) Broken or wrinkled wires 

H. Epoxy Coated Grids 

(1) Excessive epoxy 
(2) Insufficient epoxy 
(3) Bare spots 
(4) Wrinkled grids 
(5)  Torn grids 

I, Final Inspection 

(1 ! Pclelirlg plzct1c 
(2)  Torn contacts 
(3) Improperly applied grids (torn, wrinkled, etc. ) 
(4) Peeled CdS film 
(5)  Excessive curl  
(6) Voids 
(7) Excessive inclusions 
(8)  Improper dimensions 
(9)  Kapton covered cells l e s s  than 3 .  3% 

(10) Mylar covered cells l e s s  than 4.1% 

IIIA. CELL COMPONENT SPECIFICATIONS 

Materials used in the construction of CdS thin film solar cells shall meet 
the following specifications: 

1. Kapton Substrate Material 

100XH667 Kapton Polyimide film type H supplied by I .  E ,  DuPont de 
Nemours & Company, Inc., Film Dept., Chestnut Run Laboratory, Wilmington, 
Delaware. 

A .  
B. 

Fi lm supplied on 3" dia. , 1 / 4" hard paper core 
Film thickness tolerance 0.001' '  f 0.0001" as measured on optical 

micrometer 
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2 .  

3. 

C.  
D. Fi lm must be pinhole free, free of wrinkles, tears ,  pits o r  dents. 
E .  

Film must be transparent and have uniform yellow color. 

Film shall  be f r e e  of dust, dirt,  fingerprints, and other foreign matter.  

S ilve r Pow der 

Ag powder, flake, MD 750-Metals Disintegrating Corp, , Elizabeth, N ,  J .  

A.  To be received in polyethylene bag in metal container labeled with -- 
grade 
Lot number 
date 

B, Powder is to have uniform color and be free of agglorner@tione, 
C ,  Silver powder i s  to be free of magnetic particles, 

Pyre-ML Varnish 

Pyre-ML Varnish (RK-692) - E. I. DuPont de Nemours & Company, Inc, , 
Fabrics  and Finishes Dept. , Wilmington, Delaware. 

A. Pyre-ML to be received in polyethylene containers. 
B. Clear and dark amber in color with following properties: 

(1) wt/gal. 8 ,  54 f 0.05 Ibs. 
(2) '$0 solids 12.5 - 13.5% 
(3) viscosity at 25OC 
(4) flash point 37OC (open cup) 

C .  Varnish to be stored in closed container at maximum of 40°F (4,4"C) 

6-10 poises 

to insure 12 manth stability477OF (20°C) stability is 3 mos. , 120°F (49OC) is 10 - 
12 days).. 

4. _ -  Zinc Electroplate 

Zinc electroplate coated substrate must pass zinc electroplate inspection, 

5 .  CdS Raw Material 

A .  Material to be furnished in  brown colored, #5, sealed glass containers. 
B. 
C ,  Material to be given the  standard semiquantitative spectrographic I 

Orange-yellow color, granular and dry. 

analysis showmg 70 of Al, Cd, Cu, Fe, Mg, N i  and Si.  Reject material i f  i t  does 
not meet standard manufacturer ' s guar ante ed specification. 

D. 
processed and tested according to standard procedures. 
produced, material to be dated and stored for  use, 

Material to be evaporated as per standard process; films to be 
If acceptable cells 

6.  Barrier Layer 

Barr ier  layer must pass barrier layer inspection. 

7 .  Cu Grids  

Etched Cu gr id  made from .00045 + .00005" thick copper foil 99 ,  9% min. 
purity, Runchi rule 60 lpi  x 10 lp i  @ integral tab per  Drawing No. C-001B (Hamilton 
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A .  

B. 

C. 

Grids to conform to Drawing C-001B a r e  received in packages 

Check 5 to 10 grids from each shipment for thickness. 

100% visual inspect and reject  any grids with - -  

with individual paper separators.  

out of specification, inspect 100%. 
If one is 

(1) over 5 broken wires per grid 
( 2 )  wrinkles that may cause grid to fold and/or 

( 3 )  any t ea r s  
(4) any photo res i s t  
(5) poorly etched grids causing poor appearance 

(6) any grease,  fingerprints, o r  badly stained or 

(1) thickness 
(2) visual inspection resul ts  

wrinkle in processing 

and/or light transmission 

discolored grids 
D. All lots to have following inspection data: 

8. Au Electroplated Grid 

A u  electroplate grids must pass Au electroplated grid inspection. 

9. A.u Epoxy 

Gold filled conductive epoxy #3205 - Epoxy Products Co.,  New Haven, Conn. 

A. Au epQxy to be supplied in 1 oz. glass j a r s .  
B, Epoxy to be stored under  refrigeration (at 40°F shelf life is 6 mos, ) 
C .  Allow epoxy to reach room temperature before opening container. 

10. Epoxy Coated Mylar andlor Kapton 

lMylar and/or Kapton to be coated by vendor with Astro Epoxy, 

A .  Vendor to obtain plastic mater ia l  and adhesive, 
B. Vendor t coat and dry plastic fi lm. Adhesive dry film thickness 

0 1.- -1- 
to be 0.00055 in. * 8: Si888 #: 
and interleaved with polyethylene film to prevent sticking between wraps. 

C. ,L\,.',E,esi~~~e c ~ a t ~ c !  ~ ! ~ s t i ~  f i h  t~ b e  -<<rapped Cil J LUL~I p ~ r p t . ~  GUL.C 

11. Au Electroplate Negative Tab 

A u  electroplate on negative tab must pass negative tab inspections after 
Au electroplate is applied. 

111. INSPECTION RESPONSIBILITIES - cont'd 

2 .  Individual Pilot Line Operators 

A .  Substrate Preparation Operator 
(1) Kapton Substrate (before spraying) (Visual Inspection) 

(a) Pinholes 
(b) Wrinkles 
(c) Tears  
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( 2 )  Silver 

(d) Pits or dents 
(e) Dust 
( f )  Dirt 
(g) F ingerprints 
(h) Other foreign matter 

Powder (before mixing) (Visual Inspection) 
(a) Uniform color 
(b) No agglomerates 

(3)  Pyre-NIL Varnish (before mixing) 
(a) Clear and dark amber color 
(b) Proper  storage conditions 
(c) Viscosity 

(4) Conductive Spray Layer (after cure) (Visual Inspection) 
(a) Texture 
(b) Blistering 
( c )  Discoloration thru back 
(d) Discoloration of layer 
(e) Foreign particle inclusion 
(f) Pinholes 
(g) Scratches 

(5) Burnished Layer (after burnish) 
(a) Resistance measurement 
(b) Thickness measurement 
( c )  Visual of same points under (4) above 

(6) Zinc Electroplated Layer (after plating) (Visual Inspection) 
(a) Fingerprints 
(b) Pinholes thru zinc 
( c )  Scratches thru z inc  
( d! 1 8  ate r rr, arks 
(e) Stains 
( f )  Adherent foreign particles 
( g )  Uneven zinc 

B. CdS Film Evaporation Operator 
(1) Sintered CdS 

(a) Color 
(b) Foreign inclusions 

(2)  Crushed CdS 
(a) Powder size 

( 3 )  Zinc Plated Conductive Substrate 
(a) Major visual flaws 
(b) Discoloration 
( c )  Foreign particles and dust 

(4) CdS Evaporated Film 
(a) Film resistivity 
(b) Major  pinholes or  scratches 
(c) Adherence 
(d) Color 
(e) Excessive splatter 
( f )  Texture 
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C .  Barr ie r  Application Operator 
(1) Purified Cu C1 

(a) Color 
(b) Texture 

( 2 )  Barriered CdS Film 
(a) Peeling o r  chipping 
(b) Major pinholes 
(c) Copper precipitate 
(d) Film thickness 
(e) Gener a1 coloring 

D. Gridding and Packaging Operator 
(1) Epoxied Grids 

(a) Coverage uniformity 
(b) Thickness 
(c) Discoloration 
(d) Wrinkled, t ea r s  or r ips  

(2) Laminated Grids 
(a) Adherence 
(b) Tears,  r ips  o r  wrinkles 
(c) Torn tabs 
(d) Grid alignment 
( e )  Excessive epoxy 
(f) Insulator s t r ip  alignment 

(3) Baked-out Grids 
(a) Adherence 
(b) Tears, rips o r  wrinkles 
( c )  T:di iL<?>s 
( d j Grid aii gIini ent 
(e) Excessive epoxy 
(f)  Insulator s t r ip  alignment 

(5) Laminated Cover Plastic 
(a) Plastic tears  o r  wrinkles 
(b) Tab tears 
(c) Alignment 
(d) Voids 
(e) Delamination 
( f )  C u r l  

(6)  Baked-out Cover Plastic 
(a) Plastic tears  or wrinkles 
(b) Tab tears 
( c )  Alignment 
(d) Voids 
( e )  Delamination 
( f )  C u r l  
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E.  Final Preparation Operator 

(a) Delamination 
(b) Tearing 
(c) Epoxy on tabs 
(d) Epoxy on plastic 
(e) Dimensions 

(1) Cell Cleanup 

( 2 )  Tab Plating 
(a) Thin plating 
(b) Uneven plating 
(c) Discoloration 

(3) Cell Trimming 
(a) Dimensions 

F. Cell Tester 
(1) General Inspection 

(a) Peeled plastic 
(b) Torn contacts 
(c) Wrinkled, torn o r  ripped grids 
(d) Peeled CdS 
(e) Excessive curl  
(f) Voids 
(g )  Excessive inclusions 
(h) Improper dimensions 
(i) Kapton covered cell efficiency minimum 
(j) Mylar covered cell efficiency minimum 

3. Pilot Line Supervisor 

A .  Process  Chemical and Solution Control 
(1) A g  Pyre-ML Spray Mixture 

(a) Mix in accordance with Process  Specification. 
(b) Mix well with magnetic s t i r r e r  - if gelling occurs,  

dispose of solution. 

in sealed container. 
I - \  T 7 - - -  - - l - - A : - -  - + - - - A  :- - - c - < ~ n - n + - -  -n ~ r ~ n n 1 ,  n n A n  
\LJ L L G C p  U U I U L L V l L  U L U I G U  L A 1  L G I I L ~ L I C L C W I  VI* Y V ~ ~ I X  b**-u 

(d) Mix well before using. 

(2) Zinc Plating Solution 
(a) Mix in accordance with Process  Specification. 
(b) Keep bath within specified operating limits by 

initial and weekly chemical analysis. 
(c) Adjust bath parameters  to meet specified 

operating l imits.  

(3)  CuCl Purification 
PROPRIETARY 

(4) Gold Plating Solution 
(a) Mix in accordance with Process  Specification. 
(b) Keep bath within specified operating li-mits by 

initial and bi-weekly chemical analysis. 
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(c) Adjust bath parameters to meet specified 

(d) Bath clarity to be observed and maintained by 
operating limits. 

filtration as becomes ne cess ar y , 
MINIMIZE DRAG OUT LOSS. 

(5) Alconox Solution 
Alconoc, laboratory detergent, Alconox, Inc. 

fibre container. 

Plainview, N. Y. 
(a) F r e e  flowing white powder packaged in resealable 

(b) Mix according to Process  Specification 
DO NOT USE MORE THAN ONE WORK WEEK 

Change more frequently if  needed. 

(6) Alkaline Cleaning Solution 
Sodium Cymide - tech. grade 
Sodium Hydroxide - tech. grade 

(a) Mix according to Procese Specification, 
(b) Keep solution at room temperature 
(c) Keep away from acid solutions. 

(7) Acid Cleaning Solution 
Diversey Cleaner #914 liquid concentrate, Diversey Corp. 

(a) Mix according to Process  Specification. 
(b) Maintain solution concentration at 20% f570 by volume, 

Chicago, Illinois. 

Test: Use 10 ml and t i trate with 0 . 2 5  
N NaOH with phenolphthalin (mls  of 
0 . 2 5  N NaOH x 0 . 5 4  = conc YO vol) 

Add concentrated D i v e ~ s e y  Clemer  to 
ra ise  solution concentration. 
Add dimineralized H20 to lower concentration. 

(c) Make tests minimum of once a week, 
(2) R q l ~ r ~  sollitinn n f t w  maximum of 1000 grids o r  

(e) Replace more  often i f  necessary. 
after two weeks. 

(8) Copper Sulfate Solution Filter 
(a) Mix in accordance to Process  Specification. 

(9) Alcohol Rinse Solution 
(a) Change at the beginning of each work week. 
(b) Change more frequently if necessary. 
(c) Alcohol in wash bottle to be changed daily. 

(10) Bar r ie r  Pre-etch Solution 

(1 1) Barr ie r  Solution 
PROPRIETARY 

PROPRIETARY 
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( 1 2 )  Water Rinse Solutions 
(a) A l l  H20 r inse solutions a r e  continuous flow solutions 
(b) A l l  H 0 rinse solutions consist of tap HZO. 
(c) Line ?ilters a r e  to be checked monthly. 

(I 3) Demineralized H20 
(a) Used in b a r r i e r  and etch solution, Au and Zinc 

electroplating solutions, etc. 

Chemicals and supplies used in the various fabrication processes a r e  to 
meet the specifications se t  down for them in the Pilot Line Process  Specifications. 
The Pilot Line Supervisor w i l l  be responsible for the assurance that these specifi- 
cations are met. 

B. Hardware Specifications 

Substrate Preparation 
11) S' ilver Pyre-ML S pray Mixture 

(a) 600 ml Pyrex Brand Glass Beaker 
(b) Glass st irring rod 
(c) Glass bottle 

(2) Silver Pyre-ML Application 
(a) Rubber gloves 
(b) Aluminum board 
(c) Type 90043 Kim-wipes 
(d) Clips 

(3) Burnishing 
(a) Glass plates 
(b) #202, 3/4"  Scotch brand masking tape 
(cj Single-edge industrial biade 
(d) #448 Scotch br i te  ultra-fine cleaning and finishing pads 
(e) Type 900-S Kim-wipes 
( f )  Rubber gloves 
( g )  Punch 

(4) Zinc Plating Solution 
(a) 18" x ' 2 "  x '8" Polyethylene tank 
(b) pH paper 

(5) Licorice Solution 
(a) Glass beaker 
(b) Filter paper 
(c) Glass bottle 

(6)  A lconox Solution 
(a) Glass beaker 

(7)  Water Rinse Solution 
(a) Polyethylene tank 

(8) Alcohol Rinse Solution 
(a) Polyethylene tank 
(b) Spray bottle 
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(9) Zinc Electroplating 
(a) No. 3-535 Fisher  Brush, Tynex brist les 
(b) Substrate c a r r i e r  fixture 
(c) Plastic mask and clamps 
(d) Plastic sheet 
(e) Cardboard 
( f )  Paper clips 
(g) Single edge industrial blades 
(h) pHydrion Paper (3.0-5. 5), Micro Essentials Laboratory, 

Brooklyn, N.  Y. 

{F?g$ger ing 
(a) Plastic foil 

(2) CdS Crushing 
(a) Mortar and Restle 
(b) #42 Tyler screen 
(c) Glass jar 

(3) Evaporation (Vertical NRC) 
(a) Fiberfrax (0.040" thick) 
(b) Scotch brite cleaning pad 
(c) Evaporation sources 
(d) Screens 
( e )  Tweezers 
(f) Marking pen 

(4) Evaporation (Horizont a1 NRC) 
(a) Quartz wool 
(b) Semi bri te  cleaning pad 
( c )  Evaporation boats 
(d) Evaporation sources 
(e) Gloves 
( f )  Tweezers 
( g )  Marking pen 

Barr ie r  Application 
T I )  c U C I  P reparation 

PROPRiE TA R Y 

(2 )  Barr ie r  Formation 
PROPRIETARY 

Gridding and Packaging 
G old Pl ating Solution 

(a) Platinum anode 
(b) One liter Pyrex beaker 
( c )  pH paper 
(d) Polyethylene tank 

(2) Water Rinse Solution 
(a) Polyethylene tank 



(3) Acid Cleaning Solution 
(a) One liter beaker 

(4) Alkaline Cleaning Solution 
(a) Glass beaker 

( 5 )  Gold Plating of G r i d s  
(a) Plating racks 
(b) Glass beaker 

(6) Epoxied Grid 
(a) 1/8" Silicone rubber sheet 
(b) 3 mil Teflon sheet 
(c) Stainless steel  spatula 
(d) Hard surfaced roller 
(e) Shallow plastic box 

(7) Epoxied Insulation Strip 
(a) Scotch wipes #590 
(b) Scotch masking tape, #202, 3/4" 
(c) Cardboard, smooth surface 

(8) Grid Lamination 
(a) 3 mil Teflon sheet 
(b) H-18 grade aluminum foil ( 3  ml), Reynolds Aluminum Co. 
(c) Tank Nitrogen (water  pumped) 
(d) Lucite transfer plate 
(e) Glass plates 
(f) Rubber gasket 
(g) Spring clamp 

(9 j Cover Fiastic Lamination 
(a) Teflon plastic sheet ( 3  mil) 
(b) H-18 grade Aluminum foil ( 3  mil) Reynolds Aluminum Co. 
(c) Tank nitrogen (water pumped) 
(d) Lucite transfer plate 
f ~ !  C ; l a G s  plstpc: 
(f) Rubber gasket 
(g) Spring clamp 

C.  Chemical Specifications 

Substrate Preparation 
'(1) S '  ilver Pyre-ML S pray Mixture 

(a) AR Grade, N, N-Dimethyl formamide 
(b) AR Grade Toluene 

( 2 )  Silver Pyre-ML Application 
(a) AR Grade N ,  N-Dimethyl formamide 

( 3 )  Burnishing 
(a) AR Grade Methanol (Anhydrous) 
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(4) Zinc Plating Solution 
AIR Grade ammonium chloride 
Crystal technical grade ammonium fluoborate 

AR grade (2970 NH ) ammonium hydroxide 
4870 AR grade fluogoric acid 
Licorice per  Process  Solution Specification 
Zinc fluoborate (4070 solution) #2443, General 

Chemical, Cleveland, Ohio 
Technical grade zinc carbonate (powder) 
Demineralized water 
Zinc oxide 

(General them. Code 1273) 

( 5 )  Licorice Solution 
(a) Licorice root USP powdered (compound Senna 

(b) Demineralized w a t e r  
(c) AR grade (2970 NH3) ammonium hydroxide 

(a) Alconox, laboratory detergent, Alconox, Inc, 

(b) Tap water 

Powder NFX1) S. B. Penick & C o . ,  distributed 
by Norwood Drug, Inc. 

(6) Alconox Solution 

Plainview, N .  Y. 

(7) Wate r  Rinse Solution 
(a) Tap water 

(8) Alcohol Rinse Solution 
(a) AR grade methanol (anhydrous) 

(S j Zlnc Eieztropiatkg 
(a) Zinc plating solution per  Process  Solution Specification 
(b) Alconox solution per  Process  Solution Specification 
(c) Tap water 
(d) AR grade methanol (anhydrous) 

Evaporation 
71) CdS Sintering 

(a) Argon 

(2)  CdS Crushing 
None 

( 3 )  Evaporation (Vertical NRC) 
(a) AR grade methanol 
(b) AR grade hydrochloric acid 

(4) Evaporation (Horizontal NRC) 
(a) AR grade methanol 
(b) AR grade hydrochloric acid 
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Bar r i e r  Application 
11) c uc1 P reparation 

PROPRIETARY 

( 2 )  Bar r ie r  Formation 
PROPRIETARY 

Gridding and Packagin 
11) Gold Plating Solutiogn 

(a) Gold electroplating solution, Temperex HD, 

(b) Acid pH adjusting sal t  for Temperex HD process, 

(c) Base pH adjusting sal t  f o r  Temperex HD process, 

Sel-Rex Corp, Nutley, New J e r s e y  

Sel-R ex Corp . 
Sel-Rex Corp. 

(2) Water Rinae Solution 
(a) Demineralized water 

(3 )  Acid Cleaning Solution 
(a) Diversey Cleaner #914 liquid concentrate, 

(b) Demineralized water 
(c) 0.25N NaOH 
(d) Phenolphthalin 

Diversey Corp, , Chicago, Illinois 

(4) Alkaline, Cleaning Solution 
(a) Technical grade sodium cyanide 
(b) Technical grade sodium hydroxide 

( 5 )  Gold Plating of Grids  
(a) Alkaline clz2.mlg sG?utiGn 
(b) Acid cleaning solution 
(c) Temperex HD gold plating solution 
(d) AR grade methyl alcohol (anhydrous) 
(e) Demineralized wqter 
( f )  Tap water 

(6)  Epoxied G r i d  
None 

(7) Epoxied Insulation Strip 
(a) Technical grade MEK 
(b) AR grade acetone 

(8) Grid Lamination 
None 

(9) Cover Plastic Lamination 
None 
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D. Pilot Line Equipment Maintenance 

( 1 )  Subitrate Preparation 
(a) Spray Hood 

Filter 
A ir Pull 

(b) Spray p 
Daily care 
Tear down 

( c )  Drying oven 
General 

(d) Curing oven 
(e) Thickness measuring equipment 
(f) Resistivity equipment 
(g) Solution tanks 
(h) Electrical cantrols 
(i) Dryingoven 
(j) Storage box 

(2) Evaporation 
(a) Evaporation 

Pumps 
Controls 
Tooling 

(b) Mesh screens 
(c) Mortar and pestle 

(3) Barrier 
PROPRIETARY 

(4) Lamination 
(a) Laminating presses 
(b) Vacuum ovens 
( c )  Desiccator storage 
(d) Soldering iron 
(e) Cutting 

(5) Final Preparation 
(a) Au a n d  Cu tanks 
(b) Electrical tanks 

(6) Testing 
(a) Testing equipment 
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